Advertisement

Magnetodielectric Relaxation in Ho2Ti2O7 and Dy2Ti2O7 Spin Ice

  • Pramod K. Yadav
  • Chandan Upadhyay
Original Paper
  • 70 Downloads

Abstract

Materials having magnetoelectricity is one of the highest priority research topics for the development of novel multifunctional materials. Recently, Ho2Ti2O7 and Dy2Ti2O7 pyrochlores show the coexistence of ferroelectricity with complex magnetism. The present study shows that these spin ices show an anomalous nature of relaxation taking place at ~ 4 K. Arrhenius nature of frequency dispersion behavior and order of characteristic relaxation time τ0 suggest that observed relaxation is associated with non-interacting electric dipoles induced by lattice distortions. These lattice distortions are associated with prevailing 3in-1out spin structure via magnetostriction mechanism, thus enabling the control of ferroelectricity though magnetism.

Keywords

Magnetodielectric Spin ice pyrochlores Spin dynamics 

Notes

Acknowledgments

The authors acknowledge the support from India-DESY project of the Department of Science and Technology, Government of India operated through Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, India. We thank beamline scientist Dr. Martin Tolkiehn PETRA III for his help in setting up the experiments.

References

  1. 1.
    Ramirez, A.P., Hayashi, A., Cava, R.J., Siddharthan, R., Shastry, B.S.: Zero-point entropy in ‘spin ice’. Nature. 399, 333–335 (1999).  https://doi.org/10.1038/20619 ADSCrossRefGoogle Scholar
  2. 2.
    Gardner, J.S., Gingras, M.J.P., Greedan, J.E.: Magnetic pyrochlore oxides. Rev. Mod. Phys. 82, 53–107 (2010).  https://doi.org/10.1103/RevModPhys.82.53 ADSCrossRefGoogle Scholar
  3. 3.
    Snyder, J., Ueland, B.G., Slusky, J.S., Karunadasa, H., Cava, R.J., Mizel, A., Schiffer, P.: Quantum-classical reentrant relaxation crossover in Dy2Ti2O7 spin ice. Phys. Rev. Lett. 91, 107201 (2003).  https://doi.org/10.1103/PhysRevLett.91.107201 ADSCrossRefGoogle Scholar
  4. 4.
    Shvyd’Ko, Y., Stoupin, S., Shu, D., Collins, S.P., Mundboth, K., Sutter, J., Tolkiehn, M.: High-contrast sub-millivolt inelastic X-ray scattering for nano- and mesoscale science. Nat. Commun. 5, 1–6 (2014).  https://doi.org/10.1038/ncomms5219 CrossRefGoogle Scholar
  5. 5.
    Dong, X.W., Wang, K.F., Luo, S.J., Wan, J.G., Liu, J.M.: Coexistence of magnetic and ferroelectric behaviors of pyrochlore Ho2Ti2O7. J. Appl. Phys. 106, 104101 (2009).  https://doi.org/10.1063/1.3259368 ADSCrossRefGoogle Scholar
  6. 6.
    Katsufuji, T., Takagi, H.: Magnetocapacitance and spin fluctuations in the geometrically frustrated magnets R2Ti2O7 (R = rare earth). Phys. Rev. B. 69, 064422 (2004).  https://doi.org/10.1103/PhysRevB.69.064422 ADSCrossRefGoogle Scholar
  7. 7.
    Lin, L., Xie, Y.L., Wen, J.-j., Dong, S., Yan, Z.B., Liu, J.-M.: Experimental observation of magnetoelectricity in spin ice Dy2Ti2O7. New J. Phys. 17, 123018 (2015).  https://doi.org/10.1088/1367-2630/17/12/123018 ADSCrossRefGoogle Scholar
  8. 8.
    Jaubert, L.D.C., Moessner, R.: Multiferroicity in spin ice: towards magnetic crystallography of Tb2Ti2O7 in a field. Phys. Rev. B. 91, 214422 (2015).  https://doi.org/10.1103/PhysRevB.91.214422 ADSCrossRefGoogle Scholar
  9. 9.
    Fu, L.: Parity-breaking phases of spin-orbit-coupled metals with gyrotropic, ferroelectric, and multipolar orders. Phys. Rev. Lett. 115, 026401 (2015).  https://doi.org/10.1103/PhysRevLett.115.026401 ADSCrossRefGoogle Scholar
  10. 10.
    Harter, J.W., Zhao, Z.Y., Yan, J.-Q., Mandrus, D.G., Hsieh, D.: A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd2Re2O7. Science (80-. ). 356, 295–299 (2017). doi: https://doi.org/10.1126/science.aad1188 ADSCrossRefGoogle Scholar
  11. 11.
    Isakov, S.V., Moessner, R., Sondhi, S.L.: Why spin ice obeys the ice rules. Phys. Rev. Lett. 95, 217201 (2005).  https://doi.org/10.1103/PhysRevLett.95.217201 ADSCrossRefGoogle Scholar
  12. 12.
    Snyder, J., Slusky, J.S., Cava, R.J., Schiffer, P.: How ‘spin ice’ freezes. Nature. 413, 48–51 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Khomskii, D.I.: Electric dipoles on magnetic monopoles in spin ice. Nat. Commun. 3, 904–905 (2012).  https://doi.org/10.1038/ncomms1904 ADSCrossRefGoogle Scholar
  14. 14.
    Giovannetti, G., Stroppa, A., Picozzi, S., Baldomir, D., Pardo, V., Blanco-Canosa, S., Rivadulla, F., Jodlauk, S., Niermann, D., Rohrkamp, J., Lorenz, T., Streltsov, S., Khomskii, D.I., Hemberger, J.: Dielectric properties and magnetostriction of the collinear multiferroic spinel CdV2O4. Phys. Rev. B 83, 060402(R) (2011). doi: https://doi.org/10.1103/PhysRevB.83.060402
  15. 15.
    Reynet, O., Adenot, A.L., Deprot, S., Acher, O., Latrach, M.: Effect of the magnetic properties of the inclusions on the high-frequency dielectric response of diluted composites. Phys. Rev. B. 66, 944121–944129 (2002).  https://doi.org/10.1103/PhysRevB.66.094412 CrossRefGoogle Scholar
  16. 16.
    Zhang, Q., Pan, W., Bhalla, A., Cross, L.E.: Electrostrictive and dielectric response in lead magnesium niobate-lead titanate (0.9PMN 0.lPT) and lead lanthanum zirconate titanate (PLZT 93/65/35) under variation of temperature and electric field. J. Am. Ceram. Soc. 72, 599–604 (1989)CrossRefGoogle Scholar
  17. 17.
    Damjanovic, D., Newnham, R.E.: Electrostrictive and piezoelectric materials for actuator applications. J. Intell. Mater. Syst. Struct. 3, 190–208 (1992)CrossRefGoogle Scholar
  18. 18.
    Joshi, P.S.: Non-linear constitutive relations for piezoceramic materials. Smart Mater. Struct. 1, 80–83 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    Cross, L.E., Jang, S.J., Newnham, R.E., Nomura, S., Uchino, K.: Large electrostrictive effects in relaxor ferroelectrics†. Ferroelectrics. 23, 187–191 (1980).  https://doi.org/10.1080/00150198008018801 CrossRefGoogle Scholar
  20. 20.
    Ke, X., West, D.V., Cava, R.J., Schiffer, P.: Magnetothermal study of the hybrid frustrated magnet Dy2-xTbxTi2O7. Phys. Rev. B. 80, 144426 (2009).  https://doi.org/10.1103/PhysRevB.80.144426 ADSCrossRefGoogle Scholar
  21. 21.
    Yadav, P.K., Upadhyay, C.: Nature of ferroelectric transitions in spin ice Ho2Ti2O7 and Dy2Ti2O7. communicated. (2018)Google Scholar
  22. 22.
    Rodriguez-carvajal, J.: Neutron powder diffraction. Phys. B. 192, 55–69 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    Cross, L.E.: Relaxorferroelectrics : an overview. Ferroelectrics. 151, 305–320 (1994)CrossRefGoogle Scholar
  24. 24.
    Bharathi, K.K., Ramesh, G., Patro, L.N., Raju, N.R.C., Kim, D.K.: Enhanced ferromagnetic properties and high temperature dielectric anomalies in Bi0.9Ca0.05Sm0.05FeO3 prepared by hydrothermal method. Mater. Res. Bull. 62, 5–10 (2015).  https://doi.org/10.1016/j.materresbull.2014.11.017 CrossRefGoogle Scholar
  25. 25.
    Matsuhira, K., Hinatsu, Y., Tenya, K., Sakakibara, T.: Low temperature magnetic properties of frustrated pyrochlore ferromagnets Ho2Sn2O7 and Ho2Ti2O7. J. Phys.: Condens. Matter. 12, L649–L656 (2000).  https://doi.org/10.1088/0953-8984/12/40/103 ADSGoogle Scholar
  26. 26.
    Jonscher, A.K.: The universal dielectric response. Nature. 267, 673–679 (1977).  https://doi.org/10.1038/266309a0 ADSCrossRefGoogle Scholar
  27. 27.
    Nino, J.C., Lanagan, M.T., Randall, C.A., Kamba, S.: Correlation between infrared phonon modes and dielectric relaxation in Bi2O3-ZnO-Nb2O5 cubic pyrochlore. Appl. Phys. Lett. 81, 4404–4406 (2002).  https://doi.org/10.1063/1.1524699 ADSCrossRefGoogle Scholar
  28. 28.
    Saito, M., Higashinaka, R., Maeno, Y.: Magnetodielectric response of the spin-ice Dy2Ti2O7. Phys. Rev. B. 72, 144422 (2005).  https://doi.org/10.1103/PhysRevB.72.144422 ADSCrossRefGoogle Scholar
  29. 29.
    Kiyama, T., Yoshimura, K., Kosuge, K., Ikeda, Y., Bando, Y.: Invar effect of SrR: itinerant electron magnetism of Ru electrons. Phys. Rev. B. 54, R756–R759 (1996).  https://doi.org/10.1103/PhysRevB.54.R756 ADSCrossRefGoogle Scholar
  30. 30.
    Yakub, E.: The modified Debye–Grüneisen model for highly compressed diamond. J. Low Temp. Phys. 187, 20–32 (2017).  https://doi.org/10.1007/s10909-016-1716-4 ADSCrossRefGoogle Scholar
  31. 31.
    Chen, J., Hu, L., Deng, J., Xing, X.: Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. Chem. Soc. Rev. 44, 3522–3567 (2015).  https://doi.org/10.1039/c4cs00461b CrossRefGoogle Scholar
  32. 32.
    Moriya, T., Usami, K.: Magneto-volume effect and invar phenomena in ferromagnetic metals. Solid State Commun. 88, 911–915 (1993).  https://doi.org/10.1016/0038-1098(93)90268-R ADSCrossRefGoogle Scholar
  33. 33.
    Zhang, P., Xu, M., Zhang, L., Hong, J., Wang, X., Wang, Y., Chen, G., Hang, Y.: Intense 2.89 memission from Dy3+/Yb3+-codoped PbF2 crystal by 970nm laser diode pumping. Opt. Express. 23, 27786 (2015).  https://doi.org/10.1364/OE.23.027786 ADSCrossRefGoogle Scholar
  34. 34.
    Kadowaki, H., Ishii, Y., Matsuhira, K., Hinatsu, Y.: Neutron scattering study of dipolar spin iceHo2Sn2O7: frustrated pyrochlore magnets. Phys. Rev. B. 65, 144421 (2002).  https://doi.org/10.1103/PhysRevB.65.144421 ADSCrossRefGoogle Scholar
  35. 35.
    Jaubert, L.D.C., Holdsworth, P.C.W.: Magnetic monopole dynamics in spin ice. J Phys Condens Matter. 23, 164222 (2011).  https://doi.org/10.1088/0953-8984/23/16/164222 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia

Personalised recommendations