Advertisement

Investigation to the Structural, Optical, and Magnetic Properties of Synthesized Ni-Doped Anatase Nanoparticles: Essential Role of Treatment in Hydrogen on Long-Range Ferromagnetic Order

  • A. A. Dakhel
  • H. Hamad
  • Adnan Jaafar
Original Research
  • 16 Downloads

Abstract

Nanocomposite powders of anatase TiO2 doped with Ni ions (TiO2:Ni) were synthesized by facile thermal co-decomposition of a mixture of metals complexes. The X-ray diffraction (XRD) analyses using the Rietveld method confirm the formation of almost single nanocrystalline anatase structure. Anatase TiO2 incorporated with Ni ions (TiO2:Ni) illustrated the formation of a substitutional solid solutions (SSS). The diffuse reflection spectroscopy (DRS) method used to study the optical properties of the prepared samples revealed a redshift associated with Ni doping and hydrogenation, which is explained by the creation of point defects including O-vacancies. This study showed the essential importance of hydrogenation process in order to create or boost room-temperature ferromagnetism (RT-FM). The magnetic measurements indicated that anatase TiO2 doped with 4.8 mol% Ni produce a magnetic saturation of 0.84 emu/g, which is a remarkable result compared with that related to the similar studies on doped TiO2.

Keywords

Ni-doped TiO2 Room-temperature ferromagnetism Hydrogenation 

References

  1. 1.
    Tian, J., Gao, H., Deng, H., Sun, L., Kong, H., Yang, P., Chu, J.: Structural, magnetic and optical properties of Ni-doped TiO2 thin films deposited on silicon(100) substrates by sol–gel process. J. Alloys Compd. 581, 318–323 (2013)CrossRefGoogle Scholar
  2. 2.
    Manzoor, M., Rafiq, A., Ikram, M., Nafees, M., Ali, S.: Int. Nano Lett. 8, 1–8 (2018)CrossRefGoogle Scholar
  3. 3.
    Dong, J., Han, J., Liu, Y., Nakajima, A., Matsushita, S., Wei, S., Gao, W.: Appl. Mater. Interfaces. 6, 1385–1388 (2018)CrossRefGoogle Scholar
  4. 4.
    Rana, A.G., Ahmad, W., Al-Matar, A., Shawabke, R., Aslam, Z.: Synthesis and characterization of Cu–Zn/TiO2for the photocatalytic conversion of CO2to methane. Environ. Technol. 38, 1085–1092 (2017)CrossRefGoogle Scholar
  5. 5.
    Bavykin, D.V., Parmon, V.N., Lapkin, A.A., Walsh, F.C.: The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. Chem. 14, 3370–3377 (2004)CrossRefGoogle Scholar
  6. 6.
    Zhuang, H.F., Lin, C.J., Lai, Y.K., Sun, L., Li, J.: Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity. Environ. Sci. Technol. 41, 4735–4740 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Ghicov, A., Macak, J.M., Tsuchiya, H., Kunze, J., Haeublein, V., Frey, L., Schmuki, P.: Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes. Nano Lett. 6, 1080–1082 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Sun, L., Li, J., Wang, C., Li, S., Chen, H., Lin, C.: Activity. Sol. Energy. Mater. Sol. Cells. 93, 1875–1880 (2009)CrossRefGoogle Scholar
  9. 9.
    Chiarello, G.L., Aguirre, M.H., Selli, E.: Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2. J. Catal. 273, 182–190 (2010)CrossRefGoogle Scholar
  10. 10.
    Zhang, Y., Ma, H., Yi, M., Shen, Z., Yu, X., Zhang, X.: Magnetron-sputtering fabrication of noble metal nanodots coated TiO 2 nanoparticles with enhanced photocatalytic performance. Mater. Des. 125, 94–99 (2017)CrossRefGoogle Scholar
  11. 11.
    Chen, X., Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)CrossRefGoogle Scholar
  12. 12.
    Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Xu, Y., Zhang, C., Zhang, L., Zhang, X., Yao, H., Shi, J.: Pd-catalyzed instant hydrogenation of TiO2with enhanced photocatalytic performance. Energy Environ. Sci. 9, 2410–2417 (2016)CrossRefGoogle Scholar
  14. 14.
    Abdelhamid Bouaine, G., Schmerber, D., Ihiawakrim, A.D.: Structural, optical, and magnetic properties of polycrystalline Co-doped TiO2 synthesized by solid-state method. Mater. Sci. Eng. B. 177, 1618–1622 (2012)CrossRefGoogle Scholar
  15. 15.
    Zhao, Y.L., Motapothula, M., Yakovlev, N.L., Liu, Z.Q., Dhar, S., Rusydi, A., Breese, M.B.H., Wang, Q., Venkatesan, T.: Reversible ferromagnetism in rutile TiO2single crystals induced by nickel impurities. Appl. Phys. Lett. 101, 142105 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Tian, J., Leng, Y., Cui, H., Liu, H.: Hydrogenated TiO2 nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst. J. Hazard. Mater. 299, 165–173 (2015)CrossRefGoogle Scholar
  17. 17.
    Lusvardi, G., Barani, C., Giubertoni, F., Paganelli, G.: Synthesis and characterization of TiO2 nanoparticles for the reduction of water pollutants. Materials (Basel). 10, 1208 (11 pages) (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Hanawalt, J.D., Rinn, H.W., Frevel, L.K.: Ind. Eng. Anal. Chem. 10, 475–512 (1938)CrossRefGoogle Scholar
  19. 19.
    Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A. 32, 751–767 (1976)ADSCrossRefGoogle Scholar
  20. 20.
    Kittel, C.: Introduction to solid state physics, p. 425. John Wiley &Sons, NY (1996)Google Scholar
  21. 21.
    McCusker, L.B., Von Dreele, R.B., Cox, D.E., Louer, D., Scardi, P.: Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36–50 (1999)CrossRefGoogle Scholar
  22. 22.
    Khorsand Zak, A., Abd Majid, W.H., Abrishami, M.E., Yousefi, R.: X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 13, 251–256 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Kubelka, P., Munk, F.: Ein Beitrag Zur Optik Der Farbanstriche. Z. Tech. Phys. 12, 593–601 (1931)Google Scholar
  24. 24.
    Pozzo, M., Alfe, D.: Hydrogen dissociation and diffusion on transition metal (=Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces. Int. J. Hydrog. Energy. 34, 1922–1930 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Ahmad, S., Khan, W., Raushan, A.: Synthesis and characterization of Ni doped TiO2 nanoparticles by sol-gel method, conference: international conference on advanced materials for power engineering at: MGU. Kottayam Kerala, India (2015)Google Scholar
  26. 26.
    Hanaor Dorian, A.H., Assadi Mohammed, H.N., Sean, L., Aibing, Y., Sorrell Charles, C.: Ab initio study of phase stability in doped TiO2. Comput. Mech. 50, 185–194 (2012)CrossRefGoogle Scholar
  27. 27.
    Wang, H., Wei, J., Xiong, R., Shi, J., Magn, J.: Magn. Mater. 324, 2057–2061 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Kumar, A., Kashyap, M.K., Sabharwal, N., Kumar, S., Kumar, A., Kumar, P., Asokan, K.: Structural, optical and weak magnetic properties of Co and Mn codoped TiO 2 nanoparticles. Solid State Sci. 73, 19–26 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Zhou, S., Cizmar, E., Potzger, K., Krause, M., Talut, G., Helm, M., Fassbender, J., Zvyagin, S.A., Wosnitza, J., Schmidt, H.: Origin of magnetic moments in defectiveTiO2single crystals. Phys. Rev. B. 79, 113201 (4 pages) (2009)ADSCrossRefGoogle Scholar
  30. 30.
    The web page of the University of the West Indies at Mona, Jamaica, The Dept. of Chemistry, http://wwwchem.uwimona.edu.jm/spectra/MagMom.html. Accessed Sept 2018
  31. 31.
    Cheng, S.-J.: Magnetic response of magnetic ion-doped nanocrystals: effects of singleMn2+impurity. Phys. Rev. B. 72, 235332 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Tolea, F., Grecu, M.N., Kuncser, V., Constantinescu, S.G., Ghica, D.: On the role of Fe ions on magnetic properties of doped TiO2nanoparticles. Appl. Phys. Lett. 106, 142404 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Yeganeh, M., Shahtahmasebi, N., Kompany, A., Karimipour, M., Razavi, F., Nasralla, N.H.S., Siller, L.: The magnetic characterization of Fe doped TiO 2 semiconducting oxide nanoparticles synthesized by sol–gel method. Physica B. 511, 89–98 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceUniversity of BahrainZallaqKingdom of Bahrain
  2. 2.University of Abu DhabiAbu DhabiUnited Arab Emirates

Personalised recommendations