Advertisement

Magnetic, Microwave Absorbing Performance of Al8Mn5 Alloy with La Dopant

  • Yu He
  • Shunkang Pan
  • JingJing Yu
  • YongHe Liu
Original Research
  • 6 Downloads

Abstract

The Al8Mn5 − xLax (x = 0, 0.2, 0.6, 1.0) powders were triumphantly manufactured by vacuum melting and planetary mill equipment. The influences of La content on phase constitution, morphology, saturation magnetization, and electromagnetic parameters were investigated by related equipment. The consequences demonstrate that Al8Mn4La phase, average size of particulate increases and the saturation magnetization (Ms) decreases as La content increased. The minimum reflectivity of Al8Mn4.4La0.6 powder reaches about −43.5 dB in the range of 10.8 to 11.7 GHz, and the effective bandwidth (RL < − 10 dB) can obtain about 1.70 GHz with the best matching thickness of 1.8 mm. These manifest Al8Mn5-xLax (x = 0, 0.2, 0.6, 1.0) powders possess the capacity to be excellent microwave absorbing materials.

Keywords

Al8Mn5 − xLax powders Ball milling Electromagnetic parameters Magnetic performance Microwave absorbing property 

Notes

Funding Information

This project is supported by the National Natural Science Foundation of China (51361007), 2017 director fund of Guangxi Key Laboratory of wireless wideband communication and signal processing (GXKL06170107), and Innovation Project of GUET Graduate Education (2018YJCX87).

References

  1. 1.
    Liu, F., Hou, Y., Gao, S.: Exchange-coupled nanocomposites: chemical systhesis, characterozation and applications. Chem. Soc. Rev. 43, 8098–8133 (2014)CrossRefGoogle Scholar
  2. 2.
    Liu, F., Zhu, J.H., Yang, W.L.: Building nanocomposite magnets by coating a hard magnetic core with a soft magnetic shell. Angew. Chem. Int. Ed. 53, 2176–2180 (2014)CrossRefGoogle Scholar
  3. 3.
    Yang, C., Wu, J.J., Hou, Y.L.: Fe3O4 nanostructures: synthesis, growth mechanism, properties and application. Chem. Commun. 47, 5130–5141 (2011)CrossRefGoogle Scholar
  4. 4.
    Cao, M.S., Wang, X.X., Cao, W.Q., Yuan, J.: Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C. 3, 6589–6599 (2015)CrossRefGoogle Scholar
  5. 5.
    Liu, J., Cao, W.Q., Jin, H.B., Yuan, J., Zhang, D.Q., Cao, M.S.: Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature. J. Mater. Chem. C. 3, 4670–4677 (2015)CrossRefGoogle Scholar
  6. 6.
    Xu, J.S., Zhou, W.C., Luo, F.: Research progress on radar stealth technique and radar absorbing materials. Mater. Rev. 28, 46–49 (2014)Google Scholar
  7. 7.
    Duan, L., Wen, B.Y.: Research progress of ploymer-based microwave absorbing materials. Mater. Rev. 28, 58–62 (2014)Google Scholar
  8. 8.
    Zhang, B.Q., Yu, M.X., Zhang, W.: Research progress of anisotropic magnetic absorbing materials. Mater. Rev. 3, 42–46 (2013)Google Scholar
  9. 9.
    Chikazumi, S.: The magnetic body manual (middle volume). Beijing: Metallurgical Industry Press (1948)Google Scholar
  10. 10.
    Yang, Y.C., He, W.W., Lin, Q.: Neutron diffraction study of hard magnetic alloy MnAlC. Acta Phys. Sin. 32, 1454–1459 (1983)Google Scholar
  11. 11.
    Tian, R. T.: The research of Mn-Al-C type magnetic alloys (MS. thesis). Hebei University of Technology (2010)Google Scholar
  12. 12.
    Ahmed, M.A., Okasha, M., Kershi, R.M.: Influence of rare-earth ions on the structure and magnetic properties of barium W-type hexaferrite. J. Magn. Magn. Mater. 320, 1146–1150 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Ren, X.H., Xu, G.L.: Electromagnetic and microwave absorbing properties of NiCoZn-ferrites doped with La3+. J. Magn. Magn. Mater. 354, 44–48 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Liao, S.B., Yin, G.J.: The absorption and reflection of absorbing material on electromagnetic wave. Aerosp. Mater. Technol. 2, 16–20 (1992)Google Scholar
  15. 15.
    Luo, J. L., Pan, S. K., Qiao, Z. Q., Cheng, L. C., Wang, Z. Z., Lin, P. H.: Electromagnetic and microwave absorption properties of flaky Nd-Ho-Fe particles. J. Mater. Sci: Mater. Electron. 28, 16366–16373 (2017)Google Scholar
  16. 16.
    Liao, S.B.: Ferromagnetic science (Next volume), pp. 3–88. Science Press, Beijing (1988)Google Scholar
  17. 17.
    Tang, L.Y., Chi, X., Wei, J.Q.: Electromagnetic parameters and microwave absorption of Fe-(50)Ni-(50)/methyl-methacrylate composites. J. Magn. Mater. Devices. 6, 10–12 (2013)Google Scholar
  18. 18.
    Zhang, Z. Q.: Microwave magnetic and microwave absorption mechanism of FeSiAl planar anisotropy powders composites, (MS. Thesis) GanSu: Lanzhou University (2012)Google Scholar
  19. 19.
    Inui, T., Konishi, K., Oda, K.: Fabrications of broad-band RF-absorber composed of planner hexagonal ferrites. IEEE Trans. Magn. 35, 3148–3150 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    Wang, B.C., Wei, J.Q., Yang, Y., Wang, T., Li, F.S.: Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite. J. Magn. Magn. Mater. 323, 1101–1103 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Kong, I., Ahmad, S.H., Abdullah, M.H., Hui, D., Yusoff, A.N., Puryanti, D.: Magnetic and microwave absorbing properties of magnetite-thermoplastic natural rubber nanocomposites. J. Magn. Magn. Mater. 322, 3401–3409 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations