Ensemble-Based Support Vector Regression with Gravitational Search Algorithm Optimization for Estimating Magnetic Relative Cooling Power of Manganite Refrigerant in Magnetic Refrigeration Application

  • Taoreed O. Owolabi
  • Kabiru O. Akande
  • Sunday O. Olatunji
  • Nahier Aldhafferi
  • Abdullah Alqahtani
Original Paper


Magnetic refrigeration technology (MRT) is considered an energy-efficient and environmental-friendly system of refrigeration that has a considerable potential of replacing the classical gas-compression expansion method of refrigeration. Inclusion of manganite-based material (MBM) in MRT as a magnetic refrigerant has attracted significant attention recently due to cost effectiveness of the refrigerant as well as better resistance to oxidation and corrosion as compared to the commonly used metal gadolinium refrigerant. Relative cooling power (RCP) is one of the most important parameters to be considered while assessing the usefulness of MBM. Its value can be altered through doping with external materials and accurate estimation of the dopant influence is required to achieve the right amount of RCP. This present research work proposes support vector regression (SVR) ensemble models with gravitational search algorithm (GSA) hyper-parameters optimization, for estimating RCP of MBM and to determine the influence of dopants on RCP using ionic radii and dopant concentrations as descriptors. GSA-SVR ensemble model (GSE) is developed by employing the outputs of five different SVR models as descriptors while GSA-SVR ensemble model with averaging (GSEA) uses the average of the five different SVR models as its descriptor. The novel ensemble models outperform other SVR models, specifically; GSE performs better than GSA-SVR model and the conventional SVR model with performance improvement of 269.14% and 283.61%, respectively on the basis of root mean square error (RMSE). Furthermore, GSEA outperforms GSE, GSA-SVR model and conventional SVR with performance improvement of 27.51%, 370.70%, and 389.14%, respectively on the basis of RMSE. The developed GSE and GSEA also perform better than the existing RCP model in the literature with performance improvement of 11.53% and 42.21%, respectively. The results of this research work will not only serve to circumvent the experimental challenges of RCP measurement without loss of experimental precision but also further promotes environment-friendly system of refrigeration.


Magnetic refrigeration Manganite-based materials Relative cooling power Support vector regression Ensemble model and gravitational search algorithm 



Support from Imam Abdulrahman Bin Faisal University is acknowledged.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there is no conflict of interest as this manuscript represents original research work.


  1. 1.
    Sahlot, M., Riffat, S.B.: Desiccant cooling systems: a review. Int. J. Low-Carbon Technol. 11(4), 489–505 (2016)Google Scholar
  2. 2.
    Akça, G., Kılıç Çetin, S., Ekicibil, A.: Structural, magnetic and magnetocaloric properties of (La 1−x Sm x ) 0.85 K 0.15 MnO 3 (x = 0.0, 0.1, 0.2 and 0.3) perovskite manganites. Ceram. Int. 43(17), 15811–15820 (2017)CrossRefGoogle Scholar
  3. 3.
    Skini, R., Omri, A., Khlifi, M., Dhahri, E., Hlil, E.K.: Large magnetocaloric effect in lanthanum-deficiency manganites La 0.8-x□xCa0.2MnO3 (0.00 ≤ x ≤ 0.20) with a first-order magnetic phase transition. J. Magn. Magn. Mater. 364, 5–10 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    R. Ben Hassine, W. Cherif, J. A. Alonso, F. Mompean, M. T. Fernández-Díaz, and F. Elhalouani, “Enhanced relative cooling power of Fe-doped La0.67Sr0.22Ba0.11Mn1-xFexO3 perovskites: structural, magnetic and magnetocaloric properties”. J. Alloys Compd., vol. 649, no. 2015, pp. 996–1006, 2015CrossRefGoogle Scholar
  5. 5.
    Kossi, S.E.L., Ghodhbane, S., Dhahri, J., Hlil, E.K.: The impact of disorder on magnetocaloric properties in Ti-doped manganites of La0.7Sr0.25Na0.05Mn(1-x)TixO3 (0 ≤ x ≤ 0.2). J. Magn. Magn. Mater. 395, 134–142 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    K. A. Gschneider Jr., V. K. Pecharsky, and A. O. Tsokol, “Recent developments in magnetocaloric materials”. Reports Prog. Phys., vol. 68, no. 6, pp. 1479–1539, 2005Google Scholar
  7. 7.
    Mnefgui, S., Zaidi, N., Dhahri, A., Hlil, E.K., Dhahri, J.: Behavior of the magnetocaloric effect and critical exponents in La0.67Sr0.33Mn1−xVxO3 manganite oxide. J. Solid State Chem. 215, 193–200 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    A. Ezaami, E. Sellami-Jmal, I. Chaaba, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, and E. K. Hlil, “Effect of elaborating method on magnetocaloric properties of La0.7Ca0.2Ba0.1MnO3 manganite”. J. Alloys Compd., vol. 685, no. 2016, pp. 710–719, 2016Google Scholar
  9. 9.
    Tishin, A.M., Spichkin, Y.I.: The Magnetocaloric effect and its applications, Ist edn. IOP, Bristol (2003)Google Scholar
  10. 10.
    Anwar, M.S., Ahmed, F., Koo, B.H.: Enhanced relative cooling power of Ni1−xZnxFe2O4 (0.0 ≤ x ≤ 0.7) ferrites. Acta Mater. 71, 100–107 (2014)CrossRefGoogle Scholar
  11. 11.
    Tian, S., Phan, M., Yu, S., Hwi, N.: Magnetocaloric effect in a La0.7Ca0.3MnO3 single crystal. Phys. B. 327(2003), 221–224 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Zhang, Q., Thota, S., Guillou, F., Padhan, P., Hardy, V., Wahl, A., Prellier, W.: Magnetocaloric effect and improved relative cooling power in (La(0.7)Sr(0.3)MnO(3)/SrRuO(3)) superlattices. J. Phys. Condens. Matter. 23(5), 52201 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Owolabi, T.O., Akande, K.O., Olatunji, S.O., Alqahtani, A., Aldhafferi, N.: Estimation of Curie temperature of manganite-based materials for magnetic refrigeration application using hybrid gravitational based support vector regression. AIP Adv. 6(10), 105009 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Debye, P.: Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur. Ann. Phys. 386(25), 1154–1160 (1926)CrossRefGoogle Scholar
  15. 15.
    H. Omrani, M. Mansouri, W. Cheikhrouhou Koubaa, M. Koubaa, and A. Cheikhrouhou, “Structural, magnetic and magnetocaloric investigations in Pr0.6−xErxCa0.1Sr0.3MnO3 (0 ≤ x ≤ 0.06) manganites”. J. Alloys Compd., vol. 688, no. 2016, pp. 752–761, 2016Google Scholar
  16. 16.
    Sakka, A., M’nassri, R., Chniba-Boudjada, N., Ommezzine, M., Cheikhrouhou, A.: Effect of trivalent rare earth doping on magnetic and magnetocaloric properties of Pr0.5(Ce,Eu,Y)0.1Sr0.4MnO3 manganites. Appl. Phys. A Mater. Sci. Process. 122(6), 603 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Alburquenque, D., et al.: Structural and physicochemical properties of nickel manganite NiMn2O4-δsynthesized by sol-gel and ultra sound assisted methods. J. Alloys Compd. 672(2016), 307–316 (2016)CrossRefGoogle Scholar
  18. 18.
    Mleiki, A., Othmani, S., Cheikhrouhou-Koubaa, W., Koubaa, M., Cheikhrouhou, A., Hlil, E.K.: Effect of praseodymium doping on the structural, magnetic and magnetocaloric properties of Sm0.55−xPrxSr0.45MnO3 manganites. J. Alloys Compd. 645, 559–565 (2015)CrossRefGoogle Scholar
  19. 19.
    Jerbi, A., Krichene, A., Chniba-Boudjada, N., Boujelben, W.: Magnetic and magnetocaloric study of manganite compounds Pr0.5A0.05Sr0.45MnO3 (A = Na and K) and composite. Phys. B Condens. Matter. 3, PHYSBD1500923 (2015)Google Scholar
  20. 20.
    Zhou, W., Ma, C., Cao, M., Gan, Z., Wang, X., Ma, Y., Wang, X., Tan, W., Wang, D., du, Y.: Large magnetocaloric and magnetoresistance effects in metamagnetic. Ceram. Int. 43(10), 7870–7874 (2017)CrossRefGoogle Scholar
  21. 21.
    Mostafa, M.F., Tammam, A.K., El Dean, T.S., Atallah, S.S.: Mg doping of LaSrFe manganite: magnetic and electric study. Phys. B Condens. Matter. 517(April), 10–18 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Owolabi, T.O., Oloore, L.E., Akande, K.O., Olatunji, S.O.: Modeling of magnetic cooling power of manganite-based materials using computational intelligence approach. Neural Comput. Appl.Google Scholar
  23. 23.
    Anifowose, F., Labadin, J., Abdulraheem, A.: Improving the prediction of petroleum reservoir characterization with a stacked generalization ensemble model of support vector machines. Appl. Soft Comput. J. 26, 483–496 (2015)CrossRefGoogle Scholar
  24. 24.
    Owolabi, T.O., Akande, K.O., Olatunji, S.O.: Estimation of average surface energies of transition metal nitrides using computational intelligence technique. Soft. Comput. (2016)Google Scholar
  25. 25.
    Owolabi, T.O., Akande, K.O., Olatunji, S.O.: Application of computational intelligence technique for estimating superconducting transition temperature of YBCO superconductors. Appl. Soft Comput. 43(2016), 143–149 (2016)CrossRefGoogle Scholar
  26. 26.
    Owolabi, T.O., Akande, K.O., Olatunji, S.O.: Computational intelligence method of estimating solid-liquid interfacial energy of materials at their melting temperatures. J. Intell. Fuzzy Syst. 31, 519–527 (2016)CrossRefGoogle Scholar
  27. 27.
    Owolabi, T.O., Faiz, M., Olatunji, S.O., Popoola, I.K.: Computational intelligence method of determining the energy band gap of doped ZnO semiconductor. Mater. Des. 101, 277–284 (2016)CrossRefGoogle Scholar
  28. 28.
    Owolabi, T.O., Zakariya, Y.F., Akande, K.O., Olatunji, S.O.: Estimation of melting points of fatty acids using homogeneously 3 hybridized support vector regression. Neural Comput. Appl. (2016)Google Scholar
  29. 29.
    Owolabi, T.O., Akande, K.O., Olatunji, S.O.: Estimation of superconducting transition temperature T C for superconductors of the doped MgB2 system from the crystal lattice parameters using support vector regression. J. Supercond. Nov. Magn. (2014)Google Scholar
  30. 30.
    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. (Ny). 179(13), 2232–2248 (2009)CrossRefGoogle Scholar
  31. 31.
    Cortes, C., Vapnik, V.: Support-vector networks, p. 297 (1995)zbMATHGoogle Scholar
  32. 32.
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the 5th annual ACM workshop on computational learning theory, pp. 144–152 (1992)Google Scholar
  33. 33.
    Sabri, N.M., Puteh, M., Mahmood, M.R.: A review of gravitational search algorithm. Int. J. Adv. Soft Comput. its Appl. 5(3), (2013)Google Scholar
  34. 34.
    Owolabi, T.O., Akande, K.O., Olatunji, S.O., Alqahtani, A., Aldhafferi, N.: Modeling of Curie temperature of manganite for magnetic refrigeration application using manual search and hybrid gravitational-based support vector regression. Soft. Comput. 6(10), (2017)Google Scholar
  35. 35.
    Selmi, A., M’nassri, R., Boudjada, N.C., Cheikhrouhou, A.: The effect of Co doping on the magnetic and magnetocaloric properties. Ceram. Int. 41(6), 7723–7728Google Scholar
  36. 36.
    A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, and A. Cheikhrouhou, “Influence of transition metal doping (Fe, Co, Ni and Cr) on magnetic and magnetocaloric properties of Pr0.7Ca0.3MnO3 manganites”. Ceram. Int., vol. 41, no. 8, pp. 10177–10184, 2015CrossRefGoogle Scholar
  37. 37.
    Cherif, R., Hlil, E.K., Ellouze, M., Elhalouani, F., Obbade, S.: Magnetic and magnetocaloric properties of La<inf>0.6</inf>Pr <inf>0.1</inf>Sr<inf>0.3</inf>Mn<inf>1-x</inf>Fe<inf>x</inf>O<inf>3</inf> (0≤x≤0.3) manganites. J. Solid State Chem. 215, 271–276 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    Oumezzine, E., Hcini, S., Hlil, E.-K., Dhahri, E., Oumezzine, M.: Effect of Ni-doping on structural, magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3Mn1−xNixO3 nanocrystalline manganites synthesized by Pechini sol–gel method. J. Alloys Compd. 615, 553–560 (2014)CrossRefGoogle Scholar
  39. 39.
    S. Mahjoub, M. Baazaoui, R. M’nassri, H. Rahmouni, N. C. Boudjada, and M. Oumezzine, “Effect of iron substitution on the structural, magnetic and magnetocaloric properties of Pr0.6Ca0.1Sr0.3Mn1−xFexO3 (0 ≤ x ≤ 0.075) manganites”. J. Alloys Compd., vol. 608, pp. 191–196, 2014CrossRefGoogle Scholar
  40. 40.
    Ghodhbane, S., Tka, E., Dhahri, J., Hlil, E.K.: A large magnetic entropy change near room temperature in La0.8Ba0.1Ca0.1Mn0.97Fe0.03O3 perovskite. J. Alloys Compd. 600, 172–177 (2014)CrossRefGoogle Scholar
  41. 41.
    Wang, Z., Jiang, J.: Magnetic entropy change in perovskite manganites La 0.7 A 0.3 MnO 3 transition. Solid State Sci. 18, 36–41 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    Owolabi, T.O., Gondal, M.A.: A hybrid intelligent scheme for estimating band gap of doped titanium dioxide semiconductor using crystal lattice distortion. Comput. Mater. Sci. 137, 249–256 (2017)CrossRefGoogle Scholar
  43. 43.
    Owolabi, T.O., Akande, K.O., Olatunji, S.O.: Development and validation of surface energies estimator (SEE) using computational intelligence technique. Comput. Mater. Sci. 101, 143–151 (2015)CrossRefGoogle Scholar
  44. 44.
    Owolabi, T.O., Oloore, L.E., Akande, K.O., Olatunji, S.O.: Modeling of magnetic cooling power of manganite-based materials using computational intelligence approach. Neural Comput. Appl. (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics and Electronics DepartmentAdekunle Ajasin UniversityAkungba AkokoNigeria
  2. 2.Institute for Digital Communications, School of EngineeringUniversity of EdinburghEdinburghUK
  3. 3.Computer Science Department, College of Computer Science and Information TechnologyImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  4. 4.Computer Information System Department, College of Computer Science and Information TechnologyImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia

Personalised recommendations