The Self-Biased Circulator: Ferrite Materials Design and Process Considerations

  • Vincent G. HarrisEmail author
  • Alexander S. Sokolov
Original Paper


A strategic goal of next-generation transmit and receive modules used in radar and communication platforms is the continued miniaturization of semiconductor based electronics in conjunction with their integration with ferrite control elements, chief among them, the circulator. Here, we address the singular goal of efforts to transform the circulator, in its present form a three dimensional construct, to a two-dimensional device. Key to this transformation is the development of self-biased ferrite materials that are necessary for the breaking of time reversal symmetry and nonreciprocal performance of circulators and isolators. A discussion of efforts to integrate this new two-dimensional device with semiconductor-based active components will be addressed.


Circulator Ferrite Microwave Crystallographic texture Magnetic anisotropy Self-biased circulator 


  1. 1.
    Harris, V.G., Geiler, A., Chen, Y.: Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    As described in: Adam, J.D., Davis, L.E., Dionne, G.F., et al.: Ferrite devices and materials. IEEE Trans. On Magn. 50, 721 (2002).Google Scholar
  3. 3.
    Harris, V.G.: Modern microwave ferrites. IEEE Trans. on Magn. 48, 1075 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Anderson, P.W.: Antiferromagnetism. Theory of superexchange interaction. Phys. Rev. 79, 350 (1950)ADSCrossRefGoogle Scholar
  5. 5.
    Néel, L.: Propriétés magnétiques des ferrites; ferrimagnétisme et antiferromagnétisme. Annales de Physique. 12, 137 (1948)ADSCrossRefGoogle Scholar
  6. 6.
    Dionne, G.F.: Magnetic Oxides. Springer, New York (2009)CrossRefGoogle Scholar
  7. 7.
    Geiler, A., Daigle, A., Wang, J., et al.: Consequences of magnetic anisotropy in realizing practical microwave hexaferrite devices. J. Magn. Magn. Mater. 324, 3393 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Kirchmayr, H.R.: Permanent magnets and hard magnetic materials. J Phys. D: Appl. Phys. 29, 2763 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    Sui, X., Scherge, M., Kryder, M.H., et al.: Barium ferrite thin-film recording media. J. Mag. Mag. Mater. 155, 132 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    Koledintseva, M., Ravva, P.C., Drewniak, J.: Engineering of ferrite-graphite composite media for microwave shields. Proc. Int. IEEE Symp. 8, 4244 (2006)Google Scholar
  11. 11.
    Smit, J. and Wijn, H. P. J.: Ferrites, New York, Wiley, New York, (1959) and references contained within.Google Scholar
  12. 12.
    Nicholson, D.B.: Hexagonal ferrites for millimeter—wave applications. Hewlett-Packard J. 41, 59 (1990)Google Scholar
  13. 13.
    Chen, Y., Geiler, A.L., Sakai, T., et al.: Microwave and magnetic properties of self-biased barium hexaferrite screen printed thick films. J. of Appl. Phys. 99, 08M904 (2006a)CrossRefGoogle Scholar
  14. 14.
    Chen, Y., et al.: Screen printed thick self-biased, low-loss, barium hexaferrite films by hot-press sintering. J. Appl. Phys. 100, 043907 (2006b)ADSCrossRefGoogle Scholar
  15. 15.
    Albanese, G., Deriu, A.: Magnetic properties of Al, Ga, Sc, In substituted barium ferrites: a comparative analysis. Ceramurgia International. 5, 3 (1979)CrossRefGoogle Scholar
  16. 16.
    Li, Z.W., Guo, L., Chen, L., et al.: Co2+Ti4+ substituted Z-type barium ferrite with enhanced imaginary permeability and resonance frequency. J. Appl. Phys. 063905, 99 (2006)Google Scholar
  17. 17.
    Hu, B., Chen, Y., Su, Z., et al.: Magnetocrystalline anisotropy and FMR linewidth of Zr and Zn-doped Ba-hexaferrite films grown on MgO (111). IEEE Transactions on Magnetics 49, 4234 (2013).Google Scholar
  18. 18.
    Sugg, B., Vincent, H.: Magnetic properties of new M-type hexaferrites BaFe12-2xIrxCoxO19. J. Magn. Magn. Mater. 364, (1995)Google Scholar
  19. 19.
    Li, Z.W., Ong, C.K., Yang, Z., et al.: Site preference and magnetic properties for a perpendicular recording material: BaFe12-xZnx/2Zrx/2O19 nanoparticles. Physical Review B. 62, 6530 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    Daigle, A.P., Geiler, M., Geiler, A.L., et al.: Permeability spectra of Co2Z hexaferrite compacts produced via a modified aqueous co-precipitation technique. J. Magn. Magn. Mater. 324, 3719 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Su, Z., Chen, Y., Hu, B., et al.: Crystallographically textured self-biased W-type hexaferrites for X-band microwave applications. J. Appl. Phys. 113, 17B305 (2013)CrossRefGoogle Scholar
  22. 22.
    Liu, J., Zeng, Y., Su, Z., et al.: Magnetic properties of a highly textured barium hexa-ferrite quasi-single crystal and its application in low-field biased circulators. Journal of Electronic Materials. 6, 1 (2016)Google Scholar
  23. 23.
    Chen, Y., Nedoroscik, M.J., Geiler, A.L., et al.: Perpendicularly oriented polycrystalline BaFe11.1Sc0.9O19 hexaferrite with narrow FMR linewidth. J. Am. Ceram. Soc. 91, 2952 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Microwave Magnetic Materials and Integrated Circuits and the Department of Electrical and Computer EngineeringNortheastern UniversityBostonUSA

Personalised recommendations