Effects of Ag Doping and Point Defect on the Magnetism of ZnO

  • Y. J. Liu
  • Q. Y. HouEmail author
  • Z. C. Xu
  • W. L. Li
Original Paper


The magnetism sources and magnetic mechanism of Ag doping and point defect, which coexist in the presence of ZnO, are frequently controversial. To solve these problems, the effects of Ag doping and Zn or O vacancy on the magnetism of ZnO were investigated using geometry optimization and energy calculation according to the first-principles generalized gradient approximation + U (GGA+U) method of density functional theory. Results revealed that the system which Ag doping and Zn vacancy coexists in ZnO could achieve room-temperature ferromagnetism. This system had an extremely high spin polarization, which was advantageous for the spin electron injection sources applied in dilute magnetic semiconductors. Result also revealed that the magnetism of Zn14AgO16 was caused by the electron hybrid coupling effects among the O-2p, Ag-4d, Ag-5s, and Zn-4s orbits. And these effects were produced by the hole carriers after complexes were formed by the Ag doping and Zn vacancy. With regard to the most stable structure of the ground state, all doping systems which Ag replacing Zn and O vacancy coexisted in ZnO and those which Ag replacing Zn, interstitial Ag, and O vacancy coexisted in ZnO were all non-magnetic. Thus, these doping systems were unsuitable for dilute magnetic semiconductors. By contrast, the doping systems of interstitial Ag and Zn vacancy were magnetic, although the magnetism was relatively weak, thus rendering such systems inapplicable as well.


Ag doping Point defect First-principles ZnO Magnetism Vacancy 


Funding Information

This work was supported by the National Natural Science Foundation of China (grant nos. 61366008 and 61664007).


  1. 1.
    Ohno, H.: Making nonmagnetic semiconductors ferromagnetic. Science. 281, 951–956 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Bae, S.Y., Na, C.W., Kang, J.H., Park, J.: Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation. J. Phys. Chem. B. 109, 2526–2531 (2005)CrossRefGoogle Scholar
  3. 3.
    Tang, Z.K., Wong, G.K.L., Yu, P., Kawasaki, M., Ohtomo, A., Koinuma, H., Segawa, Y.: Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett. 72, 3270–3272 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    Yim, K., Lee, J., Lee, D., Lee, M., Cho, E., Nahm, H., Han, S.: Property database for single-element doping in ZnO obtained by automated first principles calculations. Sci. Rep. 7(40907), (2017)Google Scholar
  5. 5.
    Yılmz, S., Parlak, M., Özcan, S., Altunbas, M., McGlynn, E., Bacaksız, E.: Structural, optical and magnetic properties of Cr doped ZnO microrods prepared by spray pyrolysis. Appl. Surf. Sci. 257, 9293–9298 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Steiauf, D., Lyons, J.L., Janotti, A., Van de Walle, C.G.: First-principles study of vacancy-assisted impurity diffusion in ZnO. Apl. Materials. 2, 096101 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science. 287, 1019–1022 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    Ramachandran, S., Tiwari, A., Narayan, J.: Zn0.9Co0.1O-based diluted magnetic semiconducting thin films. Appl. Phys. Lett. 84, 5255–5257 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Sharma, P., Gupta, A., Rao, K.V., Owens, F.J., Sharma, R., Ahuja, R., Ososrio Guillen, J.M., Johansson, B., Gehring, G.A.: Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2, 673–677 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Huang, G.J., Wang, J.B., Zhong, X.L., Zhou, G.C., Yan, H.L.: Synthesis, structure, and room-temperature ferromagnetism of Ni-doped ZnO nanoparticles. J. Mater. Sci. 42, 6464–6468 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Karmakar, D., Mandal, S.K., Kadam, R.M., Paulose, P.L., Rajarajan, A.K.: Ferromagnetism in Fe-doped ZnO nanocrystals: experiment and theory. Phys Rev. B: Condens. Matter. 75, 144404 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Wu, H., Stroppa, A., Sakong, S., Picozzi, S., Scheffler, M., Kratzer, P.: Magnetism in C- or N-doped MgO and ZnO: a density functional study of impurity pairs. Phys. Rev. Lett. 105(267203), (2010)Google Scholar
  13. 13.
    Pan, F., Song, C., Liu, X.J., Yang, Y.C., Zeng, F.: Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater. Sci. Eng. R. 62, 1–35 (2008)CrossRefGoogle Scholar
  14. 14.
    Lee, H.J., Jeong, S.Y., Cho, C.R., Park, C.H.: Study of diluted magnetic semiconductor: Co-doped ZnO. Appl. Phys. Lett. 81, 4020–4022 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Moreno, D.T.: Silver(II) oxide or silver(I,III) oxide? J. Chem. Educ. 85, 863–865 (2008)CrossRefGoogle Scholar
  16. 16.
    Anshu, K.Z.A., Ghosh, S.: Room temperature ferromagnetism in ZnO using non-magnetic ions. Physics of Semiconductor Devices. 551–553 (2014)Google Scholar
  17. 17.
    Ali, N., Atri, A., Singh, B., Ghosh, S.: Room temperature ferromagnetism in ZnO using non-magnetic dopants. AIP Conf. Proc. 1728, 020398 (2016)CrossRefGoogle Scholar
  18. 18.
    Fan, J., Freer, R.: The roles played by Ag and AI dopants in controlling the electrical properties of ZnO varistors. J. Appl. Phys. 77, 4795–4800 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    Sankara Reddy, B., Venkatramana Reddy, S., Koteeswara Reddy, N.: Physical and magnetic properties of (Co, Ag) doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 24, 5204–5210 (2013)CrossRefGoogle Scholar
  20. 20.
    Kakhki, R.M., Tayebee, R., Ahsani, F.: New and highly efficient Ag doped ZnO visible nano photocatalyst for removing of methylene blue. J. Mater. Sci. Mater. Electron. 28, 5941–5952 (2017)CrossRefGoogle Scholar
  21. 21.
    Cheng, H.X., Wang, X.X., Hu, Y.W., Song, H.Q., Huo, J.R., Li, L., Qian, P.: Ag@ZnO core-shell nanoparticles study by first principle: the structural,magnetic and optical properties. J. Solid State Chem. 244, 181–186 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Hou, Q.Y., Zhao, C.W., Jia, X.F., Xu, Z.C.: Effect of heavy Ag doping on the physical properties of ZnO. Int. J. Mod. Phys. B. 1850099 (2018)Google Scholar
  23. 23.
    Shah, A.H., Basheer Ahamed, M., Manikandan, E., Chandramohan, R., Iydroose, M.: Magnetic, optical and structural studies on Ag doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 24, 2302–2308 (2013)CrossRefGoogle Scholar
  24. 24.
    Xu, Q., Wang, Z.J., Chang, Z.J., Liu, J.J., Ren, Y.X., Sun, H.Y.: Synthesis and properties of Ag-doped ZnO films with room temperature ferromagnetism. Chem. Phys. Lett. 666, 28–32 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Robkhob, P., Herng, T.S., Ding, J., Tang, I.-M., Thongmee, S.: Magnetic behavior of ZnO nanorods doped with silver (Ag3+) ions. J. Nanosci. Nanotechno. 17, 5631–5636 (2017)CrossRefGoogle Scholar
  26. 26.
    Ma, X.G., Wu, Y., Lv, Y.H., Zhu, Y.F.: Correlation effects on lattice relaxation and electronic structure of ZnO within the GGA+U formalism. J. Phys.Chem.C. 117, 26029–26039 (2013)CrossRefGoogle Scholar
  27. 27.
    Jing, T., Dai, Y., Ma, X.C., Wei, W., Huang, B.B.: Electronic structure and photocatalytic water-splitting properties of Ag2ZnSn(S1-xSex)4. J. Phys. Chem. C. 119, 27900–27908 (2015)CrossRefGoogle Scholar
  28. 28.
    Zhang, H.F., Lu, S.X., Xu, W.G., Yuan, F.: First-principles study of Si atoms adsorbed on ZnO (0001) surface and the effect on electronic and optical properties. Surf. Sci. 625, 30–36 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Fu, M., Li, S.L., Yao, J., Wu, H.P., He, D.W., Wang, Y.S.: Preparation and characterization of electrodeposited Ag-doped ZnO inverse opals with a smooth surface. J. Porous. Mater. 20, 1485–1489 (2013)CrossRefGoogle Scholar
  30. 30.
    Pickett, W.E., Moodera, J.S.: Half metallic magnets. Phys. Today. 54, 39–44 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    Ruderman, M.A., Kittel, C.: Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954)ADSCrossRefGoogle Scholar
  32. 32.
    Kasuya, T.: A theory of metallic ferro-and antiferromagnetism on Zener’s model. Prog. Theor. Phys. 16, 45–57 (1956)ADSCrossRefGoogle Scholar
  33. 33.
    Yosida, K.: Magnetic properties of Cu-Mn alloys. Phys. Rev. 106, 893–898 (1956)ADSCrossRefGoogle Scholar
  34. 34.
    Sato, K., Dederichs, P.H., Katayama, Y.H.: Curie temperatures of III–V diluted magnetic semiconductors calculated from first principles. Europhys. Lett. 61, 403–408 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceInner Mongolia University of TechnologyHohhotPeople’s Republic of China
  2. 2.Inner Mongolia Key Laboratory of Thin Film and CoatingsHohhotPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringInner Mongolia University of TechnologyHohhotPeople’s Republic of China

Personalised recommendations