Skip to main content
Log in

High-Performance Bulk MgB2 Superconductor Using Amorphous Nano-boron

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

MgB2 bulks were produced by in situ solid-state reaction in Ar gas using high-purity commercial powders of Mg metal and amorphous nano-B mixed in a fixed ratio of Mg:B = 1:2. Single-phase materials have been obtained and grain structure and its implications are reported. All samples were sintered at 775 °C for 3 h in Ar atmosphere. X-ray diffraction results show that high-purity MgB2 phase has been fabricated, which as well is reflected in critical temperature (Tc = 37.8 K). Magnetic measurements reveal a high critical current density (Jc) value such as 408 kA/cm2 when nano-amorphous boron is used. SEM studies show that nano-ordered MgB2 grains are formed, thereby creating large number of grain boundaries responsible for high critical current densities. Analysis of normalized pinning force curve as a function of reduced magnetic field indicates that dominant pinning is caused by grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Nature (London). 410(63), (2001)

  2. Finnemore, D.K., Ostenson, J.E., Bud'ko, S.L., Lapertot, G., Canfield, P.C.: Phys. Rev. Lett. 86(11), 2420–2422 (2001)

    Article  ADS  Google Scholar 

  3. Kajikawa, K., Nakamura, T.: IEEE Trans. Appl. Supercond. 19(3), 1669–1673 (2009)

    Article  ADS  Google Scholar 

  4. Gavaler, J.R., Janocko, M.A., Jones, C.: J. Appl. Phys. 45, (1974)

  5. Cava, R.J., Takagi, H., Batlogg, B., Zandbergen, H.W., Krajewski, J.J., Peck Jr., W.P., van Dover, R.B., Felder, R.J., Siegrist, T., Mizuhashi, K., Lee, J.O., Eisaki, H., Carter, S.A., Uchida, S.: Nature (London). 367 (1994)

  6. Bud'ko, S.L., Lapertot, G., Petrovic, C., Cunningham, C.E., Anderson, N., Canfield, P.C.: Phys. Rev. Lett. 86, 1877 (2001)

    Article  ADS  Google Scholar 

  7. Bugoslavsky, Y., Cohen, L.F., Perkins, G.K., Polichetti, M., Tate, T.J., Gwilliam, R., Caplin, A.D.: Nature. 411, 561–563 (2001)

    Article  ADS  Google Scholar 

  8. Dou, S.X., Soltanian, S., Horvat, W.X.L., Zhou, S.H., Ionescu, M., Liu, H.K., Munroe, P., Tomsic, M.: Appl. Phys. Lett. 81, 3419–3421 (2002)

    Article  ADS  Google Scholar 

  9. Mickelson, W., Cumings, J., Han, W.Q., Zettl, A.: Phys. Rev. B. 65, (2002)

  10. Lezza, P., Senatore, C., Flükiger, R.: Superconducting. Sci. Technol. 19(10), (2006)

  11. Dou, S.X., Yeoh, W.K., Horvat, J., Ionescu, M.: Appl. Phys. Lett. 83(24), (2003)

  12. Yamada, H., Hirakawa, M., Kumakura, H., Kitaguchi, H.: Superconducting. Sci. Technol. 19(2), (2006)

  13. Sudesh, Kumar, N., Das, S., Bernhard, C., Varma, G.D.: Supercond. Sci. Technol. 26, (2013)

  14. Mustapić, M., Horvat, J., Hossain, M.S., Skoko, Ž., Dou, S.X.: Superconducting. Sci. Technol. 26(7), (2013)

  15. Muralidhar, M., Inoue, K., Koblischka, M.R., Tomita, M.: J. Alloys Compd. 608, 102–109 (2014)

    Article  Google Scholar 

  16. Yamamoto, A., Shimoyama, J.-i., Ueda, S., Katsura, Y., Horii, S., Kishio, K.: Supercond Sci Technol. 17(7), (2004)

  17. Prikhna, T., Eisterer, M., Weber, H.W., Gawalek, W., Kovylaev, V.V., Karpets, M.V., Basyuk, T.V., Moshchil, V.E.: Supercond. Sci. Technol. 27(4), (2014)

  18. Prikhna, T., Eisterer, M., Goldacker, W., Gawalek, W., et al.: IEEE Trans. Appl. Supercond. 25(3), (2015)

  19. Bansal, N.P., Goldsby, J.C., Rogers, R.B., Susner, M.A., Sumption, M.D.: J. Alloys Compd. 622, 986–988 (2015)

    Article  Google Scholar 

  20. Nath, M., Parkinson, B.A.: Adv. Mater. 18(14), 1865–1868 (2006)

    Article  Google Scholar 

  21. Häßler, W., Birajdar, B., Gruner, W., Herrmann, M., Perner, O., Rodig, C., Schubert, M., Holzapfel, B., Eibl, O., Schultz, L.: Supercond Sci Technol. 19(6), (2006)

  22. Xi, X.X., Pogrebnyakov, A.V., Xu, S.Y., Chen, K., Cui, Y., Maertz, E.C., Zhuang, C.G., Qi Li, D.R., Lamborn, J.M., Redwing, Z.K., Liu, A., Soukiassian, D.G., Schlom, X.J., Weng, E.C., Dickey, Y.B., Chen, W., Tian, X.Q., Pan, S.A., Cybart, R.C.D.: Physica C. 456, 22–37 (2007)

    Article  ADS  Google Scholar 

  23. Vinod, K., Abhilash Kumar, R.G., Syamaprasad, U.: Supercond. Sci. Technol. 20(1), (2007)

  24. Gumbel, A.G., Eckert, J., Fuchs, G., Nenkov, K., Müller, K.H., Schultz, L.: Appl. Phys. Lett. 80, 2725 (2002)

    Article  ADS  Google Scholar 

  25. Yang, F., Li, S.Q., Yan, G., Feng, J.Q., Xiong, X.M., Zhang, S.N., Wang, Q.Y., liu, G.Q., Pang, Y.C., Zou, H.F., Li, C.S., Feng, Y.: J. Alloys Compd. 622, 714–718 (2015)

    Article  Google Scholar 

  26. Herbirowo, S., Sofyan, N., Saragih, R., Imaduddin, A., Hendrik, P.S., Yuwono, A.H.: AIP Conference Proceedings. 1826(020007), (2017). https://doi.org/10.1063/1.4979223

  27. Muralidhar, M., Higuchi, M., Kotaro, K., Koblischka, M.R., Jirsa, M., Murakami, M.: IEEE Trans. Appl. Supercond. 28, 8000405 (2018)

    Article  Google Scholar 

  28. Singh, D.K., Tiwari, B., Jha, R., Kishan, H., Awana, V.P.S.: Physica C: Superconductivity and its Applications. 505, 104–108 (2014)

    Article  ADS  Google Scholar 

  29. Jorgensen, J.D., Hinks, D.G., Short, S.: Phys. Rev. B. 63, 224522 (2001)

  30. Satoshi, S., Kiyoshi, F., Yoshio, T.: Proc Jpn Acad Ser B Phys Biol Sci. 55, 43–48 (1979)

    Article  Google Scholar 

  31. Kumakura, H., Takano, Y., Fujii, H., Togano, K., Kito, H., Ihara, H.: Physica C: Superconductivity and its Applications. 363, 179–183 (2001)

  32. Berlin, J.: Imaging Microsc. 13, 19–21 (2011)

  33. Cardwell, D.A., Hari Babu, N., Kambara, M., Campbell, A.M.: Physica C: Superconductivity and its Applications. 372–376(Part 2), 1262–1265 (2002)

Download references

Acknowledgements

One of the authors (Sai Srikanth Arvapalli) acknowledges support from SIT for providing the financial support for the doctoral program.

Funding

This work was partly supported by the Shibaura Institute of Technology (SIT) Research Center for Green Innovation and Grant-in-Aid FD research budget code: 112282.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miryala Muralidhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arvapalli, S.S., Muralidhar, M. & Murakami, M. High-Performance Bulk MgB2 Superconductor Using Amorphous Nano-boron. J Supercond Nov Magn 32, 1891–1895 (2019). https://doi.org/10.1007/s10948-018-4919-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4919-x

Keywords

Navigation