Advertisement

Calcium-Substituted Y3Ba5Cu8O18 Ceramics Synthesized via Thermal Treatment Method: Structural and Superconducting Properties

  • Mustafa Mousa Dihom
  • Abdul Halim Shaari
  • Hussein Baqiah
  • Chen Soo Kien
  • Rabaah Syahidah Azis
  • Roslan Abd-Shukor
  • Naif Mohammed Al-Hada
  • Mohd Mustafa Awang Kechik
  • Zainal Abidin Talib
Original Paper

Abstract

In this work, Y3(Ba1−xCax)5Cu8O18 compounds with x = 0.00, 0.01, 0.02, 0.03 and 0.05 were synthesized by thermal treatment of aqueous solution of metal nitrates and polyvinylpyrrolidone (PVP). The effects of Ca substitution on the crystal structure, electrical resistance and the microstructure of samples were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), four-point probe measurement and AC susceptibility. FESEM analysis showed that there was an increase in the grain size and compactness. The zero-resistance critical temperature decreased from 92 K for the pure sample to 83 K for sample x = 0.05. From AC susceptibility result, the intra- and inter-granular loss peaks shifted toward lower temperature and become wider and broader with the increase of Ca substitution due to the weakening of grain coupling. On the other hand, the inter-granular critical current density (Jcm) was found to increase with Ca substitution and has the highest value Jcm = 35 A cm− 2 at x = 0.05, indicating that the Ca substitution was associated with the formation of pinning centres in the Y-358 matrix.

Keywords

Ca substitution Y-Ba-Cu-O compounds Critical temperature Thermal treatment AC susceptibility 

Notes

Acknowledgments

The authors would like to thank the Faculty of Science, Universiti Putra Malaysia, for providing a suitable environment to conduct this research. Mustafa Mousa Dihom would like to thank the Ministry of Education Libya for a scholarship he received during his study.

Funding Information

This work was supported by the Ministry of Education Malaysia (MOE) under grant no. FRGS5524941 and by the Universiti Putra Malaysia.

References

  1. 1.
    Wu, M.-K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y., Chu, A.: Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58(9), 908 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    Aliabadi, A., Farshchi, Y.A., Akhavan, M.: A new Y-based HTSC with T c above 100K. Physica C: Superconductivity 469(22), 2012–2014 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Tavana, A., Akhavan, M.: How Tc can go above 100 K in the YBCO family. Eur. Phys. J. B 73(1), 79–83 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Hor, P., Gao, L., Meng, R., Huang, Z., Wang, Y., Forster, K., Vassilious, J., Chu, C., Wu, M., Ashburn, J.: High-pressure study of the new Y-Ba-Cu-O superconducting compound system. Phys. Rev. Lett. 58(9), 911 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    Pimentel, J. Jr., Buitrago, D.M., Supelano, I., Vargas, C.P., Mesquita, F., Pureur, P.: Synthesis and characterization of the superconductors Y3Ba5Cu8- xFexO18 (0.0597= x= 0.1255). J. Supercond. Nov. Magn. 28(2), 509–512 (2014)CrossRefGoogle Scholar
  6. 6.
    Akyol, M., Ayaş, A.O., Akça, G., Cetin, S.K., Ekicibil, A.: Effect of Ca doping on thermally activated flux flow in the Y3Ba5Cu8O18 superconductor. Bull. Mater. Sci. 38(5), 1231–1237 (2015)CrossRefGoogle Scholar
  7. 7.
    Udomsamuthirun, P., Kruaehong, T., Nilkamjon, T., Ratreng, S.: The new superconductors of YBaCuO materials. J. Supercond. Nov. Magn. 23(7), 1377–1380 (2010)CrossRefGoogle Scholar
  8. 8.
    Amado, J., Sarmago, R.: AC magnetic susceptibility and morphological development of YBCO HTS formed from Y:Ba:Cu = 1:2:3 and 3:5:8. J. Supercond. Nov. Magn. 28(12), 3455–3461 (2015)CrossRefGoogle Scholar
  9. 9.
    Topal, U., Akdogan, M., Ozkan, H.: Electrical and structural properties of RE3Ba5Cu8O18 (RE= Y, Sm and Nd) superconductors. J. Supercond. Nov. Magn. 24(7), 2099–2102 (2011)CrossRefGoogle Scholar
  10. 10.
    Aghabagheri, S., Mohammadizadeh, M., Kameli, P., Salamati, H.: Flux pinning enhancement in thin films of Y3Ba5Cu8O18.5+d. Physica C: Superconductivity and its Applications 549, 4–10 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    Başoğlu, M., Düzgün, İ.: Improvement of current density of different atmosphere-sintered Y358 superconductors. J. Supercond. Nov. Magn. 29(7), 1737–1740 (2016)CrossRefGoogle Scholar
  12. 12.
    Slimani, Y., Hannachi, E., Salem, M. B., Hamrita, A., Varilci, A., Dachraoui, W., Salem, M. B., Azzouz, F. B.: Comparative study of nano-sized particles CoFe2O4 effects on superconducting properties of Y-123 and Y-358. Physica B 450, 7–15 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Hammerl, G., Schmehl, A., Schulz, R.R., Goetz, B., Bielefeldt, H., Schneider, C. W., Hilgenkamp, H., Mannhart, J.: Enhanced supercurrent density in polycrystalline YBa2Cu3O7−[delta] at 77[thinsp]K from calcium doping of grain boundaries. Nature 407(6801), 162–164 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Schmehl, A., Goetz, B., Schulz, R.R., Schneider, C. W., Bielefeldt, H., Hilgenkamp, H., Mannhart, J.: Doping-induced enhancement of the critical currents of grain boundaries in YBa2Cu3O7−δ. EPL (Europhysics Letters) 47(1), 110 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Manthiram, A., Lee, S.-J., Goodenough, J.: Influence of Ca on the superconductivity of Y1xCaxBa2Cu3O7−δ. J. Solid State Chem. 73(1), 278–282 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    Jirak, Z., Hejtmanek, J., Pollert, E., Tříska, A., Vašek, P.: Structure and superconductivity in Y1− xCaxBa2Cu3O7. Physica C: Superconductivity 156(5), 750–754 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    Baldha, G., Jotania, R., Joshi, H., Pandya, H., Kulkarni, R.: Superconductivity in the system YBa2xCaxCu3O7−δ. Solid State Commun. 71(10), 839–841 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    Dihom, M.M., Shaari, A.H., Baqiah, H., Al-Hada, N.M., Kien, C.S., Azis, R.S., Kechik, M.M. A., Talib, Z.A., Abd-Shukor, R.: Microstructure and superconducting properties of Ca substituted Y(Ba1− xCax)2Cu3O7−δ ceramics prepared by thermal treatment method. Results in Physics (2017)Google Scholar
  19. 19.
    Slimani, Y., Hannachi, E., Ben Salem, M., Hamrita, A., Ben Salem, M., Ben Azzouz, F.: Fluctuation induced magneto-conductivity of Y3Ba5Cu8O18±x and YBa2Cu3O7−d. Mod. Phys. Lett. B 29(34), 1550227 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Kutuk, S., Bolat, S., Terzioglu, C., Altintas, S.: An investigation of magnetoresistivity properties of an Y 3 Ba 5 Cu 8 O y bulk superconductor. J. Alloys Compd. 650, 159–164 (2015)CrossRefGoogle Scholar
  21. 21.
    Barakat, M.M., Abou-Aly, A., Awad, R., Aly, N., Ibrahim, S.: Mechanical properties of Y3xNdxBa5− xCaxCu8O18−δ samples. J. Alloys Compd. 652, 158–166 (2015)CrossRefGoogle Scholar
  22. 22.
    Kruaehong, T.: Electrical properties and crystal structure of Y123, Y358 and Y257/Y211 composite bulk superconductors. Int. J. Phys. Sci. 9(16), 360–367 (2014)CrossRefGoogle Scholar
  23. 23.
    Dias, F.T., Oliveira, C.P.D., Vieira, V.D.N., Silva, D., Mesquita, F., Almeida, M.L.D., Schaf, J., Pureur, P.: Magnetic irreversibility and zero resistance in granular Y358 superconductor. In: Journal of Physics: Conference Series, vol. 2, p. 022009. IOP Publishing (2014)Google Scholar
  24. 24.
    Zarabinia, N., Daadmehr, V., Tehrani, F.S., Abbasi, M.: Influence of Ag/Cu substitution on structural effect of new high temperature superconductor Y3Ba5Cu8O18. Prog. Mater. Sci. 11, 242–247 (2015)Google Scholar
  25. 25.
    Gholipour, S., Daadmehr, V., Rezakhani, A., Khosroabadi, H., Tehrani, F. S., Akbarnejad, R. H.: Structural phase of Y358 superconductor comparison with Y123. J. Supercond. Nov. Magn. 25(7), 2253–2258 (2012)CrossRefGoogle Scholar
  26. 26.
    Wang, D., Sun, A., Shi, P., Zhang, M., Ma, S.: Exploring the phase formation and microstructure of a new Y-based HTSC nanopowder. J. Supercond. Nov. Magn. 27(10), 2365–2369 (2014)CrossRefGoogle Scholar
  27. 27.
    Suan, M.S.M., Johan, M.R., Siang, T. C.: Synthesis of Y3Ba5Cu8O18 superconductor powder by auto-combustion reaction: effects of citrate–nitrate ratio. Physica C: Superconductivity 480, 75–78 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Gene, S.A., Saion, E.B., Shaari, A.H., Kamarudeen, M.A., Al-Hada, N.M.: Fabrication and characterization of nanospinel ZnCr2O4 using thermal treatment method. Adv. Mater. Res. 1107, 301 (2015)CrossRefGoogle Scholar
  29. 29.
    Al-Hada, N.M., Saion, E., Kamari, H.M., Flaifel, M.H., Shaari, AH., Talib, Z.A., Abdullahi, N., Baqer, A. A., Kharazmi, A.: Structural, morphological and optical behaviour of PVP capped binary (ZnO)0.4(CdO)0.6 nanoparticles synthesised by a facile thermal route. Mater. Sci. Semicond. Process. 53, 56–65 (2016)CrossRefGoogle Scholar
  30. 30.
    Naseri, M.G., Saion, E.B., Hashim, M., Shaari, A.H., Ahangar, H.A.: Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method. Solid State Commun. 151(14), 1031–1035 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Dihom, M.M., Shaari, A.H., Baqiah, H., Al-Hada, N.M., Talib, Z.A., Kien, C.S., Azis, R.S., Kechik, M.M. A., Pah, L.K., Abd-Shukor, R.: Structural and superconducting properties of Y(Ba1−xKx)2Cu3O7−δ ceramics. Ceramics International (2017)Google Scholar
  32. 32.
    Dihom, M.M., Shaari, A.H., Baqiah, H., Al-Hada, N.M., Chen, S.K., Azis, R.A.S., Awang Kechik, M.M., Abd-Shukor, R.: Effects of calcination temperature on microstructure and superconducting properties of Y123 ceramic prepared using thermal treatment method. In: Solid State Phenomena 2017, pp. 325-329. Trans Tech PublGoogle Scholar
  33. 33.
    Al-Hada, N.M., Saion, E.B., Shaari, A.H., Kamarudin, M.A., Flaifel, M.H., Ahmad, S.H., Gene, A.: A facile thermal-treatment route to synthesize the semiconductor CdO nanoparticles and effect of calcination. Mater. Sci. Semicond. Process. 26, 460–466 (2014)CrossRefGoogle Scholar
  34. 34.
    Al-Hada, N.M., Saion, E.B., Shaari, A. H., Kamarudin, M. A., Flaifel, M. H., Ahmad, S. H., Gene, S. A.: A facile thermal-treatment route to synthesize ZnO nanosheets and effect of calcination temperature. PLoS One 9(8), e103134 (2014)CrossRefGoogle Scholar
  35. 35.
    Aksan, M., Kizilaslan, O., Aksan, E., Yakinci, M.: Thermoelectric power and thermal conductivity study of the Y3Ba5Cu8Ox system. Physica B 407(14), 2820–2824 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Sharma, D., Kumar, R., Awana, V.P.S.: DC and AC susceptibility study of sol–gel synthesized Bi2Sr2CaCu2O8 + δ superconductor. Ceram. Int. 39(2), 1143–1152 (2013).  https://doi.org/10.1016/j.ceramint.2012.07.038 CrossRefGoogle Scholar
  37. 37.
    Bean, C.P.: Magnetization of high-field superconductors. Rev. Mod. Phys. 36(1), 31 (1964)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mustafa Mousa Dihom
    • 1
  • Abdul Halim Shaari
    • 1
  • Hussein Baqiah
    • 1
  • Chen Soo Kien
    • 1
  • Rabaah Syahidah Azis
    • 1
  • Roslan Abd-Shukor
    • 2
  • Naif Mohammed Al-Hada
    • 1
  • Mohd Mustafa Awang Kechik
    • 1
  • Zainal Abidin Talib
    • 1
  1. 1.Department of Physics, Faculty of ScienceUniversiti Putra MalaysiaSelangorMalaysia
  2. 2.School of Applied PhysicsUniversiti Kebangsaan MalaysiaSelangorMalaysia

Personalised recommendations