Josephson Fluxonic Diode as a Pixel with Radiation Pumping of Fluxons in Gigahertz Imaging Systems

  • Hamed Mehrara
  • Farshid Raissi
  • Alireza ErfanianEmail author
Original Paper


Josephson fluxonic diode (JFD) has been studied and applied for gigahertz (GHz) imaging using the principle of generation of fluxons by an irradiated standing wave at gigahertz frequencies. In this device, the creation, movement, and dynamics of fluxon and anti-fluxon pairs as the magnetic field carriers in JFD have been examined in two separate modes of operation including forward and reverse bias. In both modes, the high nonlinearity feature is used for electromagnetic radiation detection. To verify this capability, an experimentally fabricated JFD based on Nb/AlOx/Nb trilayer technology has been deployed without being coupled to any patterned antenna or frontal optics. Also, the junction design parameters and DC biasing values have accordingly been chosen to achieve the best sensitivity to gigahertz radiations. As a result, the device well respond to the specified frequency, and an image is acquired at 71 GHz which proves the potential application of JFD as a pixel of the millimeter wave imaging systems with the direct detection mechanism.


Fluxon GHz imaging Josephson fluxonic diode Millimeter wave Superconducting detector 



The authors wish to thank Dr. Mahdi Khajeh for his important contribution to the experimental effort and technical support.

Supplementary material

10948_2018_4897_MOESM1_ESM.docx (13 kb)
(DOC 13.3 KB)
10948_2018_4897_MOESM2_ESM.mp4 (427 kb)
(MP4 426 KB)


  1. 1.
    Gao, X., Li, C., Gu, S., Fang, G.: Study of a new millimeter-wave imaging scheme suitable for fast personal screening. IEEE Antennas Wirel. Propag. Lett. 11, 787–790 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Gumbmann, F., Schmidt, L.: Millimeter-wave imaging with optimized sparse periodic array for short-range applications. IEEE Trans. Geosci. Remote Sens. 49(10), 3629–3638 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Appleby, R., Anderton, R.N.: Millimeter-wave and submillimeter-wave imaging for security and surveillance. Proc. IEEE 95(8), 1683–1690 (2007)CrossRefGoogle Scholar
  4. 4.
    Sinclair, G.N., Appleby, R., Coward, P.R., Price, S.: Passive millimeter-wave imaging in security scanning. In: Passive Millimeter-Wave Imaging Technology IV, pp. 40–46. International Society for Optics and Photonics (2000)Google Scholar
  5. 5.
    Robertson, D.A., Macfarlane, D.G.: A 94 GHz dual-mode imaging radarometer for remote sensing. In: Passive Millimeter-Wave Imaging Technology IX, p. 621102. International Society for Optics and Photonics (2006)Google Scholar
  6. 6.
    Sasaki, A.-I., Nagatsuma, T.: Millimeter-wave imaging using an electrooptic detector as a harmonic mixer. IEEE J. Selected Topics Quant. Electron. 6(4), 735–740 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Du, J., Hellicar, A., Li, L., Hanham, S., Nikolic, N., Macfarlane, J., Leslie, K.: Terahertz imaging using a high-Tc superconducting Josephson junction detector. Supercond. Sci. Technol. 21(12), 125025 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Kleine-Ostmann, T., Schrader, T., Bieler, M., Siegner, U., Monte, C., Gutschwager, B., Hollandt, J., Steiger, A., Werner, L., Müller, R.: THz metrology. Frequency 62(5–6), 137–148 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Vollmer, M., Klaus-Peter, M.: Infrared Thermal Imaging: Fundamentals, Research and Applications. Wiley (2017)Google Scholar
  10. 10.
    Rogalski, A.: Infrared Detectors. CRC Press (2010)Google Scholar
  11. 11.
    Popovic, Z., Grossman, E.N.: THz metrology and instrumentation. IEEE Trans. Terahertz Sci. Technol. 1 (1), 133–144 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Amirmazlaghani, M., Raissi, F.: Feasibility of roomtemperature GHz-THz direct detection in graphene through hotcarrier effect. IEEE Transactions on Device and Materials Reliability (2018)Google Scholar
  13. 13.
    Amirmazlaghani, M., Raissi, F.: Graphene-based detector for w-band and terahertz radiations. Google Patents (2018)Google Scholar
  14. 14.
    Ariyoshi, S., Otani, C., Dobroiu, A., Sato, H., Kawase, K., Shimizu, H., Taino, T., Matsuo, H.: Terahertz imaging with a direct detector based on superconducting tunnel junctions. Appl. Phys. Lett. 88(20), 203503 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Tucker, J.R., Feldman, M.J.: Quantum detection at millimeter wavelengths. Rev. Mod. Phys. 57(3), 1055 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    Day, P.K., LeDuc, H.G., Mazin, B.A., Vayonakis, A., Zmuidzinas, J.: A broadband superconducting detector suitable for use in large arrays. Nature 425(6960), 817 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Chevriaux, D., Khomeriki, R., Leon, J.: Theory of a Josephson junction parallel array detector sensitive to very weak signals. Phys. Rev. B 73(21), 214516 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Nagatsuma, T., Enpuku, K., Irie, F., Yoshida, K.: Flux-flow type Josephson oscillator for millimeter and submillimeter wave region. J. Appl. Phys. 54(6), 3302–3309 (1983)ADSCrossRefGoogle Scholar
  19. 19.
    Zhang, Y., Winkler, D., Claeson, T.: Detection of mm and submm wave radiation from soliton and flux-flow modes in a long Josephson junction. IEEE Trans. Appl. Supercond. 3(1), 2520–2523 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    Hadfield, R.H.: Single-photon detectors for optical quantum information applications. Nat. Photonics 3(12), 696 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Eisaman, M.D., Fan, J., Migdall, A., Polyakov, S.V.: Invited review article: Single-photon sources and detectors. Rev. Sci. Instrum. 82(7), 071101 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Kuo, C., Bock, J., Bonetti, J., Brevik, J., Chattopadhyay, G., Day, P., Golwala, S., Kenyon, M., Lange, A., LeDuc, H.: Antenna-coupled TES bolometer arrays for CMB polarimetry. In: Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV, p. 70201I. International Society for Optics and Photonics (2008)Google Scholar
  23. 23.
    Westbrook, B., Lee, A., Meng, X., Suzuki, A., Arnold, K., Shirokoff, E., George, E., Aubin, F., Dobbs, M., MacDermid, K.: Design evolution of the spiderweb TES bolometer for cosmology applications. J. Low Temp. Phys. 167(5–6), 885–891 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Duncan, W.D., Holland, W.S., Withington, S., Zmuidzinas, J.: Millimeter and submillimeter detectors and instrumentation for astronomy IV. In: Proc. SPIE (2008)Google Scholar
  25. 25.
    Schlaerth, J., Vayonakis, A., Day, P., Glenn, J., Gao, J., Golwala, S., Kumar, S., LeDuc, H., Mazin, B., Vaillancourt, J.: A millimeter and submillimeter kinetic inductance detector camera. J. Low Temp. Phys. 151(3–4), 684–689 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Monfardini, A., Swenson, L., Bideaud, A., Désert, F., Yates, S., Benoit, A., Baryshev, A., Baselmans, J., Doyle, S., Klein, B.: NIKA: A millimeter-wave kinetic inductance camera. Astron. Astrophys. 521, A29 (2010)CrossRefGoogle Scholar
  27. 27.
    Baselmans, J.: Kinetic inductance detectors. J. Low Temp. Phys. 167(3–4), 292–304 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Seidel, P.: Applied Superconductivity: Handbook on Devices and Applications. Wiley (2015)Google Scholar
  29. 29.
    Cherednichenko, S., Drakinskiy, V., Berg, T., Khosropanah, P., Kollberg, E.: Hot-electron bolometer terahertz mixers for the Herschel space observatory. Rev. Sci. Instrum. 79(2), 034501 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Kuzmin, L.S., Chiginev, A.V.: Multichroic bandpass seashell antenna with cold-electron bolometers for CMB measurements. In: Millimeter, Submillimeter, and Farinfrared Detectors and Instrumentation for Astronomy VIII, p. 99141U. International Society for Optics and Photonics (2016)Google Scholar
  31. 31.
    Richards, P.: Bolometers for infrared and millimeter waves. J. Appl. Phys. 76(1), 1–24 (1994)ADSCrossRefGoogle Scholar
  32. 32.
    Grossman, E.N., Dietlein, C., Bjarnason, J.E., Ramirez, M., Leivo, M., Penttila, J., Helisto, P., Luukanen, A.: Imaging with modular linear arrays of cryogenic Nb microbolometers. In: Passive Millimeter-Wave Imaging Technology XI, p. 694806. International Society for Optics and Photonics (2008)Google Scholar
  33. 33.
    Humphreys, R., Hirst, P., Heath, R., Elliner, D., Parker, N., Smith, M.A.: Passive mm-wave imager using HTS Josephson junction detectors. In: Passive Millimetre-Wave and Terahertz Imaging and Technology, pp. 59–70. International Society for Optics and Photonics (2004)Google Scholar
  34. 34.
    Noroozian, O.: Superconducting microwave resonator arrays for submillimeter/far-infrared imaging. California Institute of Technology (2012)Google Scholar
  35. 35.
    Tang, Q., Barry, P., Thakur, R.B., Kofman, A., Nadolski, A., Vieira, J., Shirokoff, E.: Fabrication of antenna-coupled KID array for cosmic microwave background detection. J. Low Temp. Phys., 1–8 (2018)Google Scholar
  36. 36.
    Allman, M.S., Verma, V.B., Stevens, M., Gerrits, T., Horansky, R.D., Lita, A.E., Marsili, F., Beyer, A., Shaw, M., Kumor, D.: A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout. Appl. Phys. Lett. 106(19), 192601 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Posada, C., Ade, P., Ahmed, Z., Arnold, K., Austermann, J., Bender, A., Bleem, L., Benson, B., Byrum, K., Carlstrom, J.: Fabrication of large dual-polarized multichroic TES bolometer arrays for CMB measurements with the SPT-3G camera. Supercond. Sci. Technol. 28(9), 094002 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Mahashabde, S., Sobolev, A., Bengtsson, A., Andrén, D., Tarasov, M.A., Salatino, M., de Bernardis, P., Masi, S., Kuzmin, L.S.: A frequency selective surface based focal plane receiver for the OLIMPO balloon-borne telescope. IEEE Trans. Terahertz Sci. Technol. 5(1), 145–152 (2015)Google Scholar
  39. 39.
    Raissi, F.: Simulation results on submillimeter wave detection by Josephson fluxonic diode and a method to address its focal plane array. IEEE Trans. Appl. Supercond. 16(1), 38–42 (2006)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Vafadarali, H., Raissi, F., Erfanian, A.: Nonlinear response of Josephson fluxonic diode to radiation based on geometry and incident radiation point. Chin. J. Phys. 56(1), 125–130 (2018)CrossRefGoogle Scholar
  41. 41.
    Raissi, F.: Modeling of the Josephson fluxonic diode. IEEE Trans. Appl. Supercond. 13(2), 3817–3820 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    Raissi, F., Nordman, J.: Josephson fluxonic diode. Appl. Phys. Lett. 65(14), 1838–1840 (1994)ADSCrossRefGoogle Scholar
  43. 43.
    Gross, R., Marx, A., Deppe, F.: Applied superconductivity: Josephson effect and superconducting electronics. De Gruyter (2015)Google Scholar
  44. 44.
    Mehrara, H., Raissi, F., Erfanian, A., Armaki, S.H.M., Abdollahi, S.: Dynamic microwave impedance of dc-biased Josephson Fluxonic Diode in the presence of magnetic field and rf drive. IEEE Trans. Appl. Supercond. 28(4), 1–8 (2018)CrossRefGoogle Scholar
  45. 45.
    Abdollahi, S., Raissi, F.: Numerical investigation of soliton dynamics, injection into the transition region of a soliton diode. Physica C: Supercond. 489, 13–18 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hamed Mehrara
    • 1
  • Farshid Raissi
    • 2
  • Alireza Erfanian
    • 1
    Email author
  1. 1.Department of Electrical EngineeringMalek-Ashtar University of TechnologyTehranIran
  2. 2.Department of Electrical EngineeringK.N. Toosi University of TechnologyTehranIran

Personalised recommendations