Advertisement

Two-Electron and Two-Hole Cooper Pairs in Superconductivity

  • I. ChávezEmail author
  • L. A. García
  • M. Grether
  • M. de Llano
  • V. V. Tolmachev
Original Paper
  • 39 Downloads

Abstract

We revisit the generalized Bose-Einstein condensation (GBEC) theory which addresses a ternary boson-fermion gas including two-hole Cooper pairs (2hCPs) as an essential component in superconductivity. Here, we extend the BCS-Bose crossover theory, itself subsumed in BEC, by explicitly including 2hCPs. Shown here are phase diagrams of Tc/TF, where Tc is the critical temperature and TF the Fermi temperature and Δ(0)/EF vs n/nf, where Δ(0) is the energy gap at zero temperature and EF is the Fermi energy of an ideal Fermi gas, with n the total electron number density and nf is that of unbound electrons at zero temperature. These phase diagrams are obtained for two pure phases, one with two-electron Cooper pairs (2eCPs) and the other with 2hCPs, plus a mixed phase with arbitrary proportions of 2e/2hCPs. We find that the extended BCS-Bose crossover predicts Tc/TF as well Δ(0)/EF values for the elemental superconductors (SCs) Al, In, Sn, Pb, Hg, and Nb which compare reasonably well with experimental data.

Keywords

Boson-fermion models Generalized Bose-Einstein condensation BCS-Bose crossover Hole Cooper pairs 

Notes

Acknowledgements

We thank G.C. Strinati for calling refs. [2, 3] to our attention.

Funding Information

IC and LAG thank CONACyT (Mexico) for postgraduate grants 291001 and 40376, respectively. MG and MdeLl thank PAPIIT-DGAPA-UNAM (Mexico) for research grants IN116914 and IN102417, respectively. We also thank CONACyT (Mexico) grant CB-2016-I no. 285894.

References

  1. 1.
    Schrieffer, R.: Theory of superconductivity, p. 41. Benjamin Inc., New York (1964)zbMATHGoogle Scholar
  2. 2.
    Keldysh, L.V., Kopaev, Y.V.: Sov. Phys. Sol. St. 6, 2219 (1965)Google Scholar
  3. 3.
    Popov, V.N.: Sov. Phys. JETP 50, 1034 (1966)ADSGoogle Scholar
  4. 4.
    Labbé, J., et al.: Phys. Rev. Lett. 19, 1039 (1967)ADSCrossRefGoogle Scholar
  5. 5.
    Eagles, D.M.: Phys. Rev. 186, 456 (1969)ADSCrossRefGoogle Scholar
  6. 6.
    Leggett, A.J.: J. Phys. (Paris). Colloq. 41, C7–19 (1980)CrossRefGoogle Scholar
  7. 7.
    Carter, R.M., Casas, M., Getino, J.M., de Llano, M., Puente, A., Rubio, H., van der Walt, D.M.: Phys. Rev. B 52, 16149 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108, 1175 (1957)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Nozières, P., Schmitt-Rink, S.: J. Low. Temp. Phys. 59, 195 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    Quick, R.M., Esebbag, C., de Llano, M.: Phys. Rev. B 47, 11512 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    Schafroth, M.R.: Phys. Rev. 96, 1442 (1954)ADSCrossRefGoogle Scholar
  12. 12.
    Schafroth, M.R., Butler, S.T., Blatt, J.M.: Helv. Phys. Acta 30, 93 (1957)MathSciNetGoogle Scholar
  13. 13.
    Schafroth, M.R.: Sol. State Phys. 10, 293 (1960)CrossRefGoogle Scholar
  14. 14.
    Blatt, J.M.: Theory of Superconductivity. Academic, New York (1964)zbMATHGoogle Scholar
  15. 15.
    Bogoliubov, N.N.: JETP 34, 41 (1958)Google Scholar
  16. 16.
    Bogoliubov, N.N., Tolmachev, V.V., Shirkov, D.V.: Fortschr. Phys. 6, 605 (1958)CrossRefGoogle Scholar
  17. 17.
    Ranninger, J., Robaszkiewicz, S.: Physica B 135, 468 (1985)CrossRefGoogle Scholar
  18. 18.
    Ranninger, J., et al.: Ann. Phys. Fr. 13, 455 (1988)ADSCrossRefGoogle Scholar
  19. 19.
    Micnas, R., et al.: Revs. Mod. Phys. 62, 113 (1990)ADSCrossRefGoogle Scholar
  20. 20.
    Micnas, R., et al.: Phys. Rev. B 66, 104516 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    Micnas, R., et al.: Struct. Bond 114, 13 (2005)CrossRefGoogle Scholar
  22. 22.
    Friedberg, R., Lee, T.D.: Phys. Rev. B40, 6745 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    Friedberg, R., et al.: Phys. Rev. B 42, 4122 (1990)ADSCrossRefGoogle Scholar
  24. 24.
    Friedberg, R., et al.: Phys. Lett. A 152, 417 and 423 (1991)Google Scholar
  25. 25.
    Friedberg, R., et al.: Phys. Rev. B 45, 10732 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    Casas, M., Rigo, A., de Llano, M., Rojo, O., Solis, M.A.: Phys. Lett. A 245, 5 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    Tolmachev, V.V.: Lett. Phys. A 266, 400 (2000)CrossRefGoogle Scholar
  28. 28.
    de Llano, M., Tolmachev, V.V.: Physica A 317, 546 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    de Llano, M., Tolmachev, V.V.: Ukrainian J. Phys. 55, 79 (2010). and refs. thereinGoogle Scholar
  30. 30.
    Grether, M., de Llano, M., Tolmachev, V.V.: Int. J. Quant. Chem. 112, 3018 (2012)CrossRefGoogle Scholar
  31. 31.
    Bogoliubov, N.N.: N. Cim. 7, 794 (1958)ADSCrossRefGoogle Scholar
  32. 32.
    Valatin, J.: N. Cim. 7, 843 (1958)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Mamedov, T.A., de Llano, M.: J. Phys. Soc. Japan 79, 044706 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    Mamedov, T.A., de Llano, M.: J. Phys. Soc. Japan 80, 074718 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Mamedov, T.A., de Llano, M.: Phil. Mag. 93, 2896 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Mamedov, T.A., de Llano, M.: Phil. Mag. 94, 4102 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Nambu, Y.: Phys. Rev. 117, 648 (1960)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    de Llano, M., Annett, J.F.: Int J. Mod. Phys. B 21, 3657 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    Chávez, I., Grether, M., de Llano, M.: J. Supercond. and Novel Mag. 28, 309 (2015)CrossRefGoogle Scholar
  40. 40.
    Adhikari, S.K., de Llano, M., Sevilla, F.J., Solís, M.A., Valencia, J.J.: Physica C 453, 37 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    Zúñiga, F., Segura, J., de Llano, M.: Helmholtz free-energy lowering in a BCS superconductor for all temperatures below T c, to be publishedGoogle Scholar
  42. 42.
    Chávez, I., García, L.A., Grether, M., de Llano, M.: Int. J. Mod. Phys. B 31, 1745004 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    Chávez, I., García, L.A., Grether, M., de Llano, M.: Int. J. Mod. Phys. B 31, 1745013 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    Ashcroft N.W., Mermin, N.D.: Solid State Physics, p 38 and 729. Saunders College Publishing, Philadelphia (1976)Google Scholar
  45. 45.
    Finnemore, D.K., Stromberg, T.F., Swenson, C.A.: Phys. Rev. 149, 231 (1966)ADSCrossRefGoogle Scholar
  46. 46.
    Finnemore, D.K., Mapother, D.E., Shaw, R.W.: Phys. Rev. 118, 127 (1960)ADSCrossRefGoogle Scholar
  47. 47.
    Faber, T.E.: Proc. Roy. Soc. Lond. A 231, 353 (1955)ADSCrossRefGoogle Scholar
  48. 48.
    Finnemore, D.K., Mapother, D.E.: Phys. Rev. 140, A507 (1965)ADSCrossRefGoogle Scholar
  49. 49.
    Van der Hoeven, B.J.C., Jr., Keesom, P.H.: Phys. Rev. 137, A103 (1965)ADSCrossRefGoogle Scholar
  50. 50.
    Townsend, P., Sutton, J.: Phys. Rev. 128, 591 (1962)ADSCrossRefGoogle Scholar
  51. 51.
    Richards, P., Tinkham, M.: Phys. Rev. 119, 575 (1960)ADSCrossRefGoogle Scholar
  52. 52.
    Giaver, I., Megerle, K.: Phys. Rev. 122, 1101 (1961)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.N.E. Baumann State Technical UniversityMoscowRussia

Personalised recommendations