Advertisement

Color Centers in Diamond as Novel Probes of Superconductivity

  • Victor M. Acosta
  • Louis S. Bouchard
  • Dmitry Budker
  • Ron Folman
  • Till Lenz
  • Patrick Maletinsky
  • Dominik Rohner
  • Yechezkel Schlussel
  • Lucas Thiel
Original Paper
  • 39 Downloads

Abstract

Magnetic imaging using color centers in diamond through both scanning and wide-field methods offers a combination of unique capabilities for studying superconductivity, for example, enabling accurate vector magnetometry at high temperature or high pressure, with spatial resolution down to the nanometer scale. The paper briefly reviews various experimental modalities in this rapidly developing nascent field and provides an outlook towards possible future directions.

Keywords

Diamond color centers High-temperature superconductivity Vortices Scanning and wide-field imaging 

Notes

Acknowledgements

The authors thank V. Z. Kresin for initiating and encouraging this review and M. L. Cohen, M. Eremets, J.-F. Roche, O. P. Sushkov, and N. Yao for the useful discussions.

Funding Information

This study received financial support from the NCCR QSIT, a competence center funded by the Swiss NSF, through the Swiss Nanoscience Institute, by the EU FP7 project DIADEMS (Grant No. 611143), and through SNF Project Grant No. 169321 and No. 155845; this work was additionally supported by the German Federal Ministry of Education and Research (BMBF) within the Quantumtechnologien program (FKZ 13N14439), the DFG DIP project Ref. FO 703/2-1, and by the Israeli Science Foundation. V. M. Acosta received funding support from the Beckman Young Investigator Program.

References

  1. 1.
    Bending, S.J.: Adv. Phys. 48(4), 449 (1999).  https://doi.org/10.1080/000187399243437 ADSCrossRefGoogle Scholar
  2. 2.
    Kresin, V.Z., Ovchinnikov, Y.N., Wolf, S.A.: Phys. Rep. 431, 231 (2006).  https://doi.org/10.1016/j.physrep.2006.05.006 ADSCrossRefGoogle Scholar
  3. 3.
    Wolf, S.A., Kresin, V.Z.: Novel Superconductivity. Springer Science & Business Media (2012)Google Scholar
  4. 4.
    Kresin, V.Z., Ovchinnikov, YN: Physics-Uspekhi 51(5), 427 (2008). http://stacks.iop.org/1063-7869/51/i=5/a=R01 ADSCrossRefGoogle Scholar
  5. 5.
    Kresin, V.: J. Supercond. Nov. Magn. 25(3), 711 (2012).  https://doi.org/10.1007/s10948-012-1439-y CrossRefGoogle Scholar
  6. 6.
    Kresin, V.Z., Ovchinnikov, Y.N.: J. Supercond. Nov. Magn. 26 (4), 745 (2013).  https://doi.org/10.1007/s10948-012-1961-y CrossRefGoogle Scholar
  7. 7.
    Amsüss, R., Saito, S., Munro, W.: In: Prawer, S., Aharonovich, I. (eds.) Quantum Information Processing with Diamond, pp 264–290. Woodhead Publishing (2014).  https://doi.org/10.1533/9780857096685.2.264 CrossRefGoogle Scholar
  8. 8.
    Chernobrod, B.M., Berman, G.P.: J. Appl. Phys. 97(1), 014903 (2005).  https://doi.org/10.1063/1.1829373 ADSCrossRefGoogle Scholar
  9. 9.
    Taylor, J.M., Cappellaro, P., Childress, L., Jiang, L., Neumann, P., Budker, D., Hemmer, P.R., Yacoby, A., Walsworth, R., Lukin, M.D.: Nat. Phys. 4, 810 (2008).  https://doi.org/10.1038/nphys1075 CrossRefGoogle Scholar
  10. 10.
    Degen, C.L.: Appl. Phys. Lett. 92(243111) (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Acosta, V.M., Bauch, E., Ledbetter, M.P., Waxman, A., Bouchard, L.S., Budker, D.: Phys. Rev. Lett. 104, 070801 (2010).  https://doi.org/10.1103/PhysRevLett.104.070801 ADSCrossRefGoogle Scholar
  12. 12.
    Acosta, V.M., Bauch, E., Jarmola, A., Zipp, L.J., Ledbetter, M.P., Budker, D.: Appl. Phys. Lett. 97, 174104 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Dolde, F., Fedder, H., Doherty, M.W., Nöbauer, T., Rempp, F., Balasubramanian, G., Wolf, T., Reinhard, F., Hollenberg, L.C.L., Jelezko, F., Wrachtrup, J.: Nat. Phys. 7, 459 (2011).  https://doi.org/10.1038/nphys1969 CrossRefGoogle Scholar
  14. 14.
    Rondin, L., Tetienne, J.P., Hingant, T., Roch, J.F., Maletinsky, P., Jacques, V.: Rep. Prog. Phys. 77, 056503 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Jelezko, F., Wrachtrup, J.: Phys. Stat. Solidi (a) 203(13), 3207 (2006).  https://doi.org/10.1002/pssa.200671403 ADSCrossRefGoogle Scholar
  16. 16.
    Robledo, L., Bernien, H., van der Sar, T., Hanson, R.: New J. Phys. 13(2), 025013 (2011). http://stacks.iop.org/1367-2630/13/i=2/a=025013 ADSCrossRefGoogle Scholar
  17. 17.
    Dumeige, Y., Chipaux, M., Jacques, V., Treussart, F., Roch, J.F., Debuisschert, T., Acosta, V., Jarmola, A., Jensen, K., Kehayias, P., Budker, D.: Phys. Rev. B 87(155202) (2013)Google Scholar
  18. 18.
    Kalb, N., Humphreys, P.C., Slim, J.J., Hanson, R.: Phys. Rev. A 97, 062330 (2018).  https://doi.org/10.1103/PhysRevA.97.062330 ADSCrossRefGoogle Scholar
  19. 19.
    Tetienne, J., Rondin, L., Spinicelli, P., Chipaux, M., Debuisschert, T., Roch, J., Jacques, V.: New J. Phys. 14, 103033 (2012).  https://doi.org/10.1088/1367-2630/14/10/103033 CrossRefGoogle Scholar
  20. 20.
    Doherty, M.W., Manson, N.B., Delaney, P., Jelezko, F., Wrachtrup, J., Hollenberg, L.C.: Phys. Rep. 528(1), 1 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Jensen, K., Kehayias, P., Budker, D.: High Sensitivity Magnetometers. Springer International Publishing, chap. Magnetometry with Nitrogen-Vacancy Centers in Diamond, pp. 553–576 (2017)Google Scholar
  22. 22.
    Siyushev, P., Kaiser, F., Jacques, V., Gerhardt, I., Bischof, S., Fedder, H., Dodson, J., Markham, M., Twitchen, D., Jelezko, F., Wrachtrup, J.: Appl. Phys. Lett. 97(24), 241902 (2010).  https://doi.org/10.1063/1.3519849. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3017569/ ADSCrossRefGoogle Scholar
  23. 23.
    Gustafsson, M.G.L.: Proc. Natl. Acad. Sci. 102(37), 13081 (2005).  https://doi.org/10.1073/pnas.0406877102. http://www.pnas.org/content/102/37/13081 ADSCrossRefGoogle Scholar
  24. 24.
    Chmyrov, A., Keller, J., Grotjohann, T., Ratz, M., d’Este, E., Jakobs, S., Eggeling, C., Hell, S.W.: Nat. Methods 10, 737 EP (2013).  https://doi.org/10.1038/nmeth.2556 CrossRefGoogle Scholar
  25. 25.
    Thiel, L., Rohner, D., Ganzhorn, M., Appel, P., Neu, E., Müller, B., Kleiner, R., Koelle, D., Maletinsky, P.: Nat. Nanotechnol. 11, 677 (2016).  https://doi.org/10.1038/nnano.2016.63 ADSCrossRefGoogle Scholar
  26. 26.
    Pelliccione, M., Jenkins, A., Ovartchaiyapong, P., Reetz, C., Emmanouilidou, E., Ni, N., Jayich, A.C.B.: Nat. Nanotechnol. 11(8), 700 (2016).  https://doi.org/10.1038/nnano.2016.68 ADSCrossRefGoogle Scholar
  27. 27.
    Grinolds, M., Warner, M., De Greve, K., Dovzhenko, Y., Thiel, L., Walsworth, R.L.L., Hong, S., Maletinsky, P., Yacoby, A.: Nat. Nanotechnol. 9, 279 (2014).  https://doi.org/10.1038/nnano.2014.30 ADSCrossRefGoogle Scholar
  28. 28.
    Appel, P., Neu, E., Ganzhorn, M., Barfuss, A., Batzer, M., Gratz, M., Tschöpe, A., Maletinsky, P.: Rev. Sci. Instrum. 87(063703), 063703 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Bouchard, L.S., Acosta, V.M., Bauch, E., Budker, D.: New J. Phys. 13(025017), 025017 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Lim, H.J., Byrne, J.G.: Metall. Mater. Trans. B 28(3), 425 (1997).  https://doi.org/10.1007/s11663-997-0108-1 CrossRefGoogle Scholar
  31. 31.
    Acosta, V.M., Bauch, E., Ledbetter, M.P., Waxman, A., Bouchard, L.S., Budker, D.: Phys. Rev. Lett. 104, 070801 (2010).  https://doi.org/10.1103/PhysRevLett.104.070801. https://link.aps.org/doi/10.1103/PhysRevLett.104.070801 ADSCrossRefGoogle Scholar
  32. 32.
    Chen, X.D., Dong, C.H., Sun, F.W., Zou, C.L., Cui, J.M., Han, Z.F., Guo, G.C.: Appl. Phys. Lett. 99(16), 161903 (2011).  https://doi.org/10.1063/1.3652910 ADSCrossRefGoogle Scholar
  33. 33.
    Doherty, M.W., Acosta, V.M., Jarmola, A., Barson, M.S.J., Manson, N.B., Budker, D., Hollenberg, L.C.L.: Phys. Rev. B 90, 041201 (2014).  https://doi.org/10.1103/PhysRevB.90.041201. https://link.aps.org/doi/10.1103/PhysRevB.90.041201 ADSCrossRefGoogle Scholar
  34. 34.
    Laraoui, A., Aycock-Rizzo, H., Gao, Y., Lu, X., Riedo, E., Meriles, C.A.: Nat. Commun. 6, 8954 EP (2015).  https://doi.org/10.1038/ncomms9954 ADSCrossRefGoogle Scholar
  35. 35.
    Kucsko, G., Maurer, P.C., Yao, N.Y., Kubo, M., Noh, H.J., Lo, P.K., Park, H., Lukin, M.D.: Nature 500, 54 EP (2013).  https://doi.org/10.1038/nature12373 ADSCrossRefGoogle Scholar
  36. 36.
    Kehayias, P., Mrózek, M., Acosta, V.M., Jarmola, A., Rudnicki, D.S., Folman, R., Gawlik, W., Budker, D.: Phys. Rev. B 89, 245202 (2014).  https://doi.org/10.1103/PhysRevB.89.245202. https://link.aps.org/doi/10.1103/PhysRevB.89.245202 ADSCrossRefGoogle Scholar
  37. 37.
    Fang, K., Acosta, V.M., Santori, C., Huang, Z., Itoh, K.M., Watanabe, H., Shikata, S., Beausoleil, R.G.: Phys. Rev. Lett. 110, 130802 (2013).  https://doi.org/10.1103/PhysRevLett.110.130802. https://link.aps.org/doi/10.1103/PhysRevLett.110.130802 ADSCrossRefGoogle Scholar
  38. 38.
    Waxman, A., Schlussel, Y., Groswasser, D., Acosta, V.M., Bouchard, L.S., Budker, D., Folman, R.: Phys. Rev. B 89(054509), 054509 (2014).  https://doi.org/10.1103/PhysRevB.89.054509 ADSCrossRefGoogle Scholar
  39. 39.
    Alfasi, N., Masis, S., Shtempluck, O., Kochetok, V., Buks, E.: AIP Adv. 6(7), 075311 (2016).  https://doi.org/10.1063/1.4959225 ADSCrossRefGoogle Scholar
  40. 40.
    Schlussel, Y., Lenz, T., Rohner, D., Bar-Haim, Y., Bougas, L., Groswasser, D., Kieschnick, M., Rozenberg, E., Thiel, L., Waxman, A., et al.: arXiv:1803.01957 (2018)
  41. 41.
    Nusran, N.M., Joshi, K.R., Cho, K., Tanatar, M.A., Meier, W.R., Bud’ko, S.L., Canfield, P.C., Liu, Y., Lograsso, T.A., Prozorov, R.: New J. Phys. 20(4), 043010 (2018). http://stacks.iop.org/1367-2630/20/i=4/a=043010 ADSCrossRefGoogle Scholar
  42. 42.
    Joshi, K.R., Nusran, N.M., Cho, K., Tanatar, M.A., Meier, W.R., Bud’ko, S.L., Canfield, P.C., Prozorov, R: ArXiv e-prints (2018)Google Scholar
  43. 43.
    Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.F., Jacques, V.: Phys. Rev. B 84, 195204 (2011).  https://doi.org/10.1103/PhysRevB.84.195204. https://link.aps.org/doi/10.1103/PhysRevB.84.195204 ADSCrossRefGoogle Scholar
  44. 44.
    Casola, F., van der Sar, T., Yacoby, A.: Nat. Rev. Mater. 3, 17088 EP (2018).  https://doi.org/10.1038/natrevmats.2017.88 ADSCrossRefGoogle Scholar
  45. 45.
    Lesik, M., Raatz, N., Tallaire, A., Spinicelli, P., John, R., Achard, J., Gicquel, A., Jacques, V., Roch, J., Meijer, J., Pezzagna, S.: Phys. Stat. Solidi (A) 213, 2594 (2016).  https://doi.org/10.1002/pssa.201600219 ADSCrossRefGoogle Scholar
  46. 46.
    Lesik, M., Tetienne, J.P., Tallaire, A., Achard, J., Mille, V., Gicquel, A., Roch, J.F., Jacques, V.: Appl. Phys. Lett. 104, 113107 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    Lesik, M., Plays, T., Tallaire, A., Achard, J., Brinza, O., William, L., Chipaux, M., Toraille, L., Debuisschert, T., Gicquel, A., Roch, J., Jacques, V.: Diamond Relat. Mater. 56.  https://doi.org/10.1016/j.diamond.2015.05.003 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    Kleinsasser, E.E., Stanfield, M.M., Banks, J.K.Q., Zhu, Z., Li, W.D., Acosta, V.M., Watanabe, H., Itoh, K.M., Fu, K.M.C.: Appl. Phys. Lett. 108(20), 202401 (2016).  https://doi.org/10.1063/1.4949357 ADSCrossRefGoogle Scholar
  49. 49.
    Rittweger, E., Han, K.Y., Irvine, S.E., Eggeling, C., Hell, S.W.: Nat. Photon. 3, 144 (2009).  https://doi.org/10.1038/nphoton.2009.2 ADSCrossRefGoogle Scholar
  50. 50.
    Tetienne, J.P., Hingant, T., Kim, J.V., Diez, L.H., Adam, J.P., Garcia, K., Roch, J.F., Rohart, S., Thiaville, A., Ravelosona, D., Jacques, V.: Science 344, 1366 (2014).  https://doi.org/10.1126/science.1250113 ADSCrossRefGoogle Scholar
  51. 51.
    Gross, I., Akhtar, W., Garcia, V., Martínez, L.J., Chouaieb, S., Garcia, K., Carrétéro, C., Barthélémy, A., Appel, P., Maletinsky, P., Kim, J.V., Chauleau, J.Y., Jaouen, N., Viret, M., Bibes, M., Fusil, S., Jacques, V.: Nature 549, 252 (2017).  https://doi.org/10.1038/nature23656 ADSCrossRefGoogle Scholar
  52. 52.
    Balasubramanian, G., Chan, I., Kolesov, R., Al-Hmoud, M., Tisler, J., Shin, C., Kim, C., Wojcik, A., Hemmer, A., amd Krueger, P.R., Hanke, T., Leitenstorfer, A., Bratschitsch, R., Jelezko, F., Wrachtrup, J.: Nature 455, 648 (2008).  https://doi.org/10.1038/nature07278 ADSCrossRefGoogle Scholar
  53. 53.
    Rondin, L., Tetienne, J.P., Spinicelli, P., Dal Savio, C., Karrai, K., Dantelle, G., Thiaville, A., Rohart, S., Roch, J.F., Jacques, V.: Appl. Phys. Lett. arXiv:1108.4438. in print (2012)
  54. 54.
    Maletinsky, P., Hong, S., Grinolds, M., Hausmann, B., Lukin, M., Walsworth, R., Loncar, M., Yacoby, A.: Nat. Nanotechnol. 7, 320 (2012).  https://doi.org/10.1038/NNANO.2012.50 ADSCrossRefGoogle Scholar
  55. 55.
    Grinolds, M.S., Hong, S., Maletinsky, P., Luan, L., Lukin, M.D., Walsworth, R.L., Yacoby, A.: Nat. Phys. 9, 215 (2013).  https://doi.org/10.1038/nphys2543 CrossRefGoogle Scholar
  56. 56.
    Babinec, T.M., Hausmann, B.J., Khan, M., Zhang, Y., Maze, J.R., Hemmer, P.R., Lončar, M.: Nat. Nanotechnol. 5, 195 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    Roth, B.J., Sepulveda, N.G., Wikswo, J.P.: J. Appl. Phys. 65(1), 361 (1989).  https://doi.org/10.1063/1.342549 ADSCrossRefGoogle Scholar
  58. 58.
    Appel, P., Neu, E., Ganzhorn, M., Barfuss, A., Marietta, B, Gratz, M., Tschöpe, A., Maletinsky, P.: Rev. Sci. Instrum. 87, 063703 (2016).  https://doi.org/10.1063/1.4952953 ADSCrossRefGoogle Scholar
  59. 59.
    Blatter, G., Feigel’man, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Rev. Mod. Phys. 66, 1125 (1994).  https://doi.org/10.1103/RevModPhys.66.1125 ADSCrossRefGoogle Scholar
  60. 60.
    Robledo, L., Childress, L., Bernien, H., Hensen, B., Alkemade, P.F.A., Hanson, R.: Nature 477(7366), 574 (2011).  https://doi.org/10.1038/nature10401 ADSCrossRefGoogle Scholar
  61. 61.
    Yale, C.G., Buckley, B.B., Christle, D.J., Burkard, G., Heremans, F.J., Bassett, L.C., Awschalom, D.D.: Proc. Natl. Acad. Sci. 110, 7595 (2013).  https://doi.org/10.1073/pnas.1305920110 ADSCrossRefGoogle Scholar
  62. 62.
    Auslaender, O.M., Luan, L., Straver, E.W.J., Hoffman, J.E., Koshnick, N.C., Zeldov, E., Bonn, D.A., Liang, R., Hardy, W.N., Moler, K.A.: Nat. Phys. 5(1), 35 (2008).  https://doi.org/10.1038/nphys1127 CrossRefGoogle Scholar
  63. 63.
    Pearl, J.: Appl. Phys. Lett. 5(4), 65 (1964).  https://doi.org/10.1063/1.1754056 ADSCrossRefGoogle Scholar
  64. 64.
    Carneiro, G., Brandt, E.H.: Phys. Rev. B 61, 6370 (2000).  https://doi.org/10.1103/PhysRevB.61.6370 ADSCrossRefGoogle Scholar
  65. 65.
    Pezzagna, S., Naydenoc, B., Jelezko, F., Wrachtrup, J., Meijer, J.: New J. Phys. 12(065017), 065017 (2010).  https://doi.org/10.1088/1367-2630/12/6/065017 ADSCrossRefGoogle Scholar
  66. 66.
    Myers, B.A., Das, A., Dartiailh, M.C., Ohno, K., Awschalom, D.D., Bleszynski Jayich, A.C.: Phys. Rev. Lett. 113, 027602 (2014).  https://doi.org/10.1103/PhysRevLett.113.027602 ADSCrossRefGoogle Scholar
  67. 67.
    Shields, B., Hedrich, N., Maletinsky, P.: in preparation (2018)Google Scholar
  68. 68.
    Fischer, O., Kugler, M., Maggio-Aprile, I., Berthod, C., Renner, C.: Rev. Mod. Phys. 79, 353 (2007).  https://doi.org/10.1103/RevModPhys.79.353 ADSCrossRefGoogle Scholar
  69. 69.
  70. 70.
    Suderow, H., Guillamȯn, I., Rodrigo, J.G., Vieira, S.: Supercond. Sci. Technol. 27(6), 063001 (2014). http://stacks.iop.org/0953-2048/27/i=6/a=063001 ADSCrossRefGoogle Scholar
  71. 71.
    Vasyukov, D., Anahory, Y., Embon, L., Halbertal, D., Cuppens, J., Neeman, L., Finkler, A., Segev, Y., Myasoedov, Y., Rappaport, M.L., Huber, M.E., Zeldov, E.: Nat. Nanotechnol. 8(9), 639 (2013).  https://doi.org/10.1038/nnano.2013.169 ADSCrossRefGoogle Scholar
  72. 72.
    Embon, L., Anahory, Y., Suhov, A., Halbertal, D., Cuppens, J., Yakovenko, A., Uri, A., Myasoedov, Y., Rappaport, M.L., Huber, M.E., et al.: Sci. Rep. 5, 7598 (2015).  https://doi.org/10.1038/srep07598 ADSCrossRefGoogle Scholar
  73. 73.
    Embon, L., Anahory, Y., Jelić, Ž.L., Lachman, E.O., Myasoedov, Y., Huber, M.E., Mikitik, G.P., Silhanek, A.V., Milošević, M.V., Gurevich, A., et al.: Nat. Commun. 8(1), 85 (2017).  https://doi.org/10.1038/s41467-017-00089-3 ADSCrossRefGoogle Scholar
  74. 74.
    Degen, C.L., Reinhard, F., Cappellaro, P.: Rev. Mod. Phys. 89(3), 035002 (2017).  https://doi.org/10.1103/RevModPhys.89.035002 ADSCrossRefGoogle Scholar
  75. 75.
  76. 76.
    Embon, L., Anahory, Y., Jelić, Z̆. L., Lachman, E.O., Myasoedov, Y., Huber, M.E., Mikitik, G., Silhanek, A.V., Milos̆ević, M.V., Gurevich, A., Zeldov, E.: Nat. Commun. 8(85), 85 (2017).  https://doi.org/10.1038/s41467-017-00089-3 ADSCrossRefGoogle Scholar
  77. 77.
    Lüscher, A., Milstein, A.I., Sushkov, O.P.: Phys. Rev. Lett. 98, 037001 (2007).  https://doi.org/10.1103/PhysRevLett.98.037001. https://link.aps.org/doi/10.1103/PhysRevLett.98.037001 ADSCrossRefGoogle Scholar
  78. 78.
    Kolkowitz, S., Safira, A., High, A.A., Devlin, R.C., Choi, S., Unterreithmeier, Q.P., Patterson, D., Zibrov, A.S., Manucharyan, V.E., Park, H., Lukin, M.D.: Science 347(6226), 1129 (2015).  https://doi.org/10.1126/science.aaa4298. http://science.sciencemag.org/content/347/6226/1129 ADSCrossRefGoogle Scholar
  79. 79.
    Kumar, D., Chandran, M., Ramachandra Rao, M.S.: Appl. Phys. Lett. 110(19), 191602 (2017).  https://doi.org/10.1063/1.4982591 ADSCrossRefGoogle Scholar
  80. 80.
    Doherty, M.W., Struzhkin, V.V., Simpson, D.A., McGuinness, L.P., Meng, Y., Stacey, A., Karle, T.J., Hemley, R.J., Manson, N.B., Hollenberg, L.C.L., Prawer, S.: Phys. Rev. Lett. 112, 047601 (2014).  https://doi.org/10.1103/PhysRevLett.112.047601. https://link.aps.org/doi/10.1103/PhysRevLett.112.047601 ADSCrossRefGoogle Scholar
  81. 81.
    Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Nature 525, 73 EP (2015).  https://doi.org/10.1038/nature14964 ADSCrossRefGoogle Scholar
  82. 82.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for High Technology MaterialsUniversity of New MexicoAlbuquerqueUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of California Los AngelesLos AngelesUSA
  3. 3.Helmholtz InstitutJohannes Gutenberg-Universität MainzMainzGermany
  4. 4.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  5. 5.Department of PhysicsBen-Gurion University of the NegevBe’er ShevaIsrael
  6. 6.Johannes Gutenberg-Universität MainzMainzGermany
  7. 7.Department of PhysicsUniversity of BaselBaselSwitzerland

Personalised recommendations