Advertisement

Effect of Fe and Ti Substitution Doping on Magnetic Property of Monolayer CrSi2: a First-Principle Investigation

  • Shaobo Chen
  • Shiyun Zhou
  • Wanjun Yan
  • Ying Chen
  • Xinmao Qin
  • Wen Xiong
Original Paper
  • 21 Downloads

Abstract

First-principle calculations based on spin-polarized density functional theory were performed to investigate the effect of Fe and Ti substitution doping on magnetic property of monolayer CrSi2. The electronic structures, binding energy, magnetic property, total and partial density of states, and spin density of monolayer CrSi2 are scientifically studied. Calculated binding energy reveals that Fe-doped monolayer CrSi2 is more stable than Ti-doped monolayer CrSi2. The local magnetic moment of Fe and Ti atom all decrease compared with atomic moment in free gas phase due to variation of bond interaction and charge transfer. The density of states and spin-density results indicated that local magnetic moment of Fe atom is larger than Ti atom, leading to total magnetic moment of Fe-doped monolayer CrSi2 is bigger than Ti-doped monolayer CrSi2.

Keywords

Magnetic property Substitutions doping Monolayer CrSi2 First principles 

Notes

Acknowledgements

We are grateful to the cloud computing platform of Guizhou University for computing support.

Funding Information

This work was supported by the key projects of the tripartite foundation of the Guizhou Science and Technology Department (Grant No. [2015]7696) and Guizhou College Student Innovation Entrepreneurship Training Program (Grant No. 201710667017) by major projects for the creative research groups of Guizhou Province of China (Grant No. [2016]048), by the innovation team of Anshun University (Grant No. 2015PT02), and by the Natural Science Foundation of the Science and Technology Department of Guizhou Province of China (Grant No. [2010]2001).

References

  1. 1.
    Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: A review of graphene. Chem. Rev. 110, 132–145 (2009)CrossRefGoogle Scholar
  2. 2.
    Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., Govindaraj, A.: Graphene: The new twodimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7777 (2009)CrossRefGoogle Scholar
  3. 3.
    Yan Voon, L.C.L., Guzmán-Verri, G. G.: Issilicone the next graphene. MRS Bull. 39, 366–373 (2014)CrossRefGoogle Scholar
  4. 4.
    Kara, A., Enriquez, H., Seitsonen, A.P., Lew Yan Voon, L.C., Vizzini, S., Aufray, B., Oughaddou, H.: A review on silicene—new candidate for electronics. Sur. Sci. Rep. 67, 1–18 (2012)CrossRefGoogle Scholar
  5. 5.
    Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C., Zhi, C.: Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979–2993 (2010)CrossRefGoogle Scholar
  6. 6.
    Pakdel, A., Zhi, C., Bando, Y., Golberg, D.: Low-dimensional boron nitride nanomaterials. Matet. Today 15, 256–265 (2012)CrossRefGoogle Scholar
  7. 7.
    Chhowalla, M., Shin, H.S., Eda, G., Li, L.J., Loh, K.P., Zhang, H.: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)CrossRefGoogle Scholar
  8. 8.
    Butler, S.Z., et al.: Progress, challenges, and opportunities in twodimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013)CrossRefGoogle Scholar
  9. 9.
    Han, N.N., Liu, H.S., Zhao, J.J.: Novel magnetic monolayers of transition metal silicide. J. Supercond. Nov. Magn. 28, 1755–1758 (2015)CrossRefGoogle Scholar
  10. 10.
    Chen, S.B., Chen, Y., et al.: Magnetism and optical property of Mn-doped monolayer CrSi2 by first-principle study. J. Supercond. Nov. Magn.  https://doi.org/10.1007/s10948-0174523-5 (2017)
  11. 11.
    Wang, X.Q., Li, H.D., Wang, J.T.: Induced ferromagnetism in one-side semihydrogenated silicene and germanene. Phys. Chem. Chem. Phys. 14, 3031–3036 (2012)CrossRefGoogle Scholar
  12. 12.
    Zhang, C.W., Yan, S.S.: First-principles study of ferromagnetism in twodimensional silicene with hydrogenation. J. Phys. Chem. C 116, 4163–4166 (2012)CrossRefGoogle Scholar
  13. 13.
    Kaloni, T.P., Gangopadhyay, S., Singh, N., Jones, B., Schwingenschlögl, U.: Electronic properties of Mn-decorated silicene on hexagonal boron nitride. Phys. Rev. B 88, 235418–1–235418-4 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Krijn, M.P.C.M., Eppenga, R.: First-principles electronic structure and optical properties of CrSi2. Phys. Rev. B 44, 9042–9044 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    Bellani, V., Guizzetti, G., Marabelli, F., et al.: Theory and experiment on the optical properties of CrSi2. Phys. Rev. B 46, 9380–9389 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B 136, 864–871 (1964)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, A1133–A1138 (1965)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    Payne, M.C., et al.: Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1064–1096 (1992)CrossRefGoogle Scholar
  20. 20.
    Clark, S.J., et al.: First principles methods using CASTEP. Z. Kristall. 220, 567–570 (2005)Google Scholar
  21. 21.
    Kresse, G., Joubert, D.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1758–1775 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Chen, Q, Wang, J.L.: Structural, electronic, and magnetic properties of TMZn11O12 and TM2Zn10O12 clusters (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). Chem. Phys. Lett. 474, 336–341 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Vaz, C.A.F., Bland, J.A.C., Lauhoff, G: Magnetism in ultrathin film structures. Rep. Prog. Phys. 71, 056501–1–056501-78 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Electronic and Information EngineeringAnshun UniversityAnshunChina
  2. 2.Department of Physics and Institute of Condensed Matter PhysicsChongqing UniversityChongqingChina

Personalised recommendations