Advertisement

Solvothermal Synthesis of Mesoporous Fe3O4 Nanoparticles in Mixed Solvent of Ethylene Glycol and Water: Structure and Magnetic Properties

  • Yajing ZhangEmail author
  • Chunyan Li
  • Lidong Liu
  • Kangjun WangEmail author
  • Yuan Zhu
  • Jiaqi Ben
  • Jing Wu
Original Paper
  • 137 Downloads

Abstract

Mesoporous Fe3O4 nanoparticles were synthesized by a solvothermal method, via a mixed solvent of ethylene glycol (EG) and deionized water, using iron chloride and urea as the precursors. The phase, morphology, and pore structure are investigated by the characterization of X-ray diffraction (XRD), transmission electron microscopy (TEM), and N2 isotherm adsorption–desorption. The results show that the amount of water in the mixed solvent plays vital role in controlling the size of Fe3O4 nanoparticles, specific surface area, and pore size. Additionally, solid Fe3O4 nanospheres were prepared using only EG as solvent, while α-Fe2O3 nanosized polyhedrals were obtained with only water as solvent. The mesoporous Fe3O4 nanoparticles show a ferromagnetic behavior, with saturation magnetizations (Ms) of 78–82 emu g− 1 and coercivities (Hc) ranging from 13–58 Oe. The α-Fe2O3 nanoparticles also exhibit a weak-ferrimagnetic character, with a remanent magnetization (Mr) of 0.24 emu g− 1, and Hc of 558 Oe.

Keywords

Solvothermal Mesoporous Fe3O4 α-Fe2O3 Magnetic property 

Notes

Acknowledgments

This work has been supported by the National Nature Science Foundation of China (51301114, 21203125, 51602206), Natural Science Foundation of Liaoning Province (201602598, 2015020649), and the Science Research Foundation of Education Department of Liaoning Province (LQ2017011, L2016003).

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Karunakaran, C., Vinayagamoorthy, P., Jayabharathi, J.: Langmuir 49, 15031 (2014)CrossRefGoogle Scholar
  2. 2.
    Hou, B.H., Wang, Y.Y., Guo, J.Z., et al.: ACS Appl. Mater. Interfaces 4, 3581 (2018)CrossRefGoogle Scholar
  3. 3.
    Wang, X.Y., Liao, Y.L., Zhang, H.W., et al.: ACS Appl. Mater. Interfaces 4, 3644 (2018)CrossRefGoogle Scholar
  4. 4.
    Su, J., Cao, M.H., Ren, L., et al.: J. Phys. Chem. C 30, 14469 (2011)CrossRefGoogle Scholar
  5. 5.
    Zhu, Y.F., Fang, Y., Kaskel, S.: J. Phys. Chem. C 39, 16382 (2010)CrossRefGoogle Scholar
  6. 6.
    Liu, R., Guo, Y.L., Odusote, G., et al.: ACS Appl. Mater. Interfaces 18, 9167 (2013)CrossRefGoogle Scholar
  7. 7.
    Wu, W., Jiang, C.Z., Roy, V.A.L.: Nanoscale 8, 19421 (2016)CrossRefGoogle Scholar
  8. 8.
    Laurent, S., Forge, D., Port, M., et al.: Chem. Rev. 108, 2064 (2008)CrossRefGoogle Scholar
  9. 9.
    Xiao, Z., Xia, Y., Ren, Z.H., et al.: J. Mater. Chem. 22, 20566 (2012)CrossRefGoogle Scholar
  10. 10.
    Zhang, D.P., Lu, C.H., Ni, Y.R., et al.: CrystEngComm 15, 4755 (2013)CrossRefGoogle Scholar
  11. 11.
    Xuan, X.H., Wang, F., Lai, J.M.Y., et al.: ACS Appl. Mater. Interfaces 2, 237 (2011)CrossRefGoogle Scholar
  12. 12.
    Xia, T., Xu, X.L., Wang, J.P., et al.: Electrochim. Acta 160, 115 (2014)Google Scholar
  13. 13.
    Jiang, T., Poyraz, A.S., Lyer, A., et al.: J. Phys. Chem. C 19, 10454 (2015)CrossRefGoogle Scholar
  14. 14.
    Chen, L.Y., Lin, Z., Zhao, C.L., et al.: J. Alloys Compd. 1, L1 (2011)CrossRefGoogle Scholar
  15. 15.
    Jayanthi, S.A., Gnana, D.M., Jayashainy, J., et al.: Mater. Chem. Phys. 162, 316 (2015)CrossRefGoogle Scholar
  16. 16.
    Jiang, K., Sun, B.L., Yao, M.Q., et al.: Micro. Meso. Mater. 124, 197 (2009)CrossRefGoogle Scholar
  17. 17.
    Zhou, W.J., He, W., Zhong, S.D., et al.: J. Magn. Magn. Mater. 321, 1025 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Zhang, Y., Chai, C.P., Lou, Y.J., et al.: Mater. Sci. Eng. B 188, 13 (2014)CrossRefGoogle Scholar
  19. 19.
    Asuha, S., Wang, H.L., Zhao, S., et al.: Ceram. Int. 38, 6579 (2012)CrossRefGoogle Scholar
  20. 20.
    Guo, S.J., Li, D., Zhang, L.S., et al.: Biomaterials 30, 1881 (2009)CrossRefGoogle Scholar
  21. 21.
    Zhang, Y.J., Or, S.W., Zhang, Z.D.: J. Nanosci. Nanotechnol. 14, 4664 (2014)CrossRefGoogle Scholar
  22. 22.
    Pol, V.G., Daemen, L.L., Vogel, S., et al.: Ind. Eng. Chem. Res. 920, 2 (2010)Google Scholar
  23. 23.
    Deng, H., Li, X.L., Peng, Q., et al.: Angew. Chem. Int. Ed. 44, 2782 (2005)CrossRefGoogle Scholar
  24. 24.
    Yu, D., Sun, X., Zou, J., et al.: J. Phys. Chem. B 110, 21667 (2006)CrossRefGoogle Scholar
  25. 25.
    Thomms, M., Kaneko, K., Neimark, A.V.: Pure Appl. Chem. 1051, 9–10 (2015)Google Scholar
  26. 26.
    Cychosz, K.A., G–Nicolas, R., G-Martinez, J., et al.: Chem. Soc. Rev. 46, 389 (2017)CrossRefGoogle Scholar
  27. 27.
    Yu, J.G., Jin, J., Cheng, B., et al.: J. Mater. Chem. A 2, 3407 (2014)CrossRefGoogle Scholar
  28. 28.
    Zhong, L.S., Hu, J.S., Liang, H.P., et al.: Adv. Mater. 18, 2426 (2006)CrossRefGoogle Scholar
  29. 29.
    Zhang, Y.J., Zhu, Y., Wang, K.J., et al.: J. Porous Mater. 22, 959 (2015)CrossRefGoogle Scholar
  30. 30.
    Zhang, D.P., Lu, C.H., Ni, Y.R., et al.: CrystEngComm 15, 4755 (2013)CrossRefGoogle Scholar
  31. 31.
    He, T., Chen, D.R., Jiao, X.L.: Chem. Mater. 16, 737 (2004)CrossRefGoogle Scholar
  32. 32.
    Dan, D.H., Wang, J.P., Luo, H.L., et al.: J. Magn. Magn. Mater. 136, 176 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    Santra, S., Tapec, R., Theodoropoulou, N., et al.: Langmuir. Mater. 17, 2900 (2001)CrossRefGoogle Scholar
  34. 34.
    Alben, R., Becker, J.J., Chi, M.C.: J. Appl. Phys 49, 1653 (1978)ADSCrossRefGoogle Scholar
  35. 35.
    Novoselova, L.Y.: RSC Adv. 7, 51298 (2017)CrossRefGoogle Scholar
  36. 36.
    Manukyan, K.V., Chen, Y.S., Rouvimov, S., Li, P., Li, X., Dong, S.N., Liu, X.Y., Furduna, J.K., Orlov, A., Bernstein, G.H., Porod, W., Roslyakov, S., Mukasyan, A.S.: J. Phys. Chem. C 118, 16264 (2014)CrossRefGoogle Scholar
  37. 37.
    Roy, M., Milan, M., Naskar, K.: Phys. Chem. Chem. Phys. 18, 20528 (2016)CrossRefGoogle Scholar
  38. 38.
    Bødker, F., Hansen, M., Koch, C., et al.: Phys. Rev. B: Condens. Matter Mater. Phys. 61, 6826 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    Tadic, M., Panjan, M., Damnjanovic, V., et al.: Appl. Surf. Sci. 320, 183 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    Lee, J., Kwak, S.Y.: Cryst. Growth Des. 17, 4496 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemical EngineeringShenyang University of Chemical TechnologyShenyangPeople’s Republic of China

Personalised recommendations