Advertisement

Half-Metallic and Half-Semiconductor Gaps in Cr-Based Chalcogenides: DFT + U Calculations

  • H. Moulkhalwa
  • Y. Zaoui
  • K. O. ObodoEmail author
  • A. Belkadi
  • L. Beldi
  • B. Bouhafs
Original Paper
  • 181 Downloads

Abstract

Using full-potential linear-augmented plane waves plus local orbitals (FP-LAPW) method, within the generalized gradient approximation (GGA) and GGA + U (Hubbard Coulomb onsite correction) as well as the modified Becke-Johnson approach (mBJ-GGA and mBJ-GGA + U), we have carried out a systematic investigation of the structural, electronic, and magnetic properties of CrS, CrSe, and CrTe compounds in two competing phases: the zinc-blende (ZB) and wurtzite (WZ) structures. We obtained half-metallic (HM) gaps of 1.35 (2.32), 1.65 (2.49), and 1.52 (1.80) for the CrS, CrSe, and CrTe compounds, respectively, in the ZB phase within the GGA + U (mBJ-GGA + U) approach. The HM gaps are 1.78, 2.11, and 1.53 for CrS, CrSe, and CrTe compounds, respectively, in the WZ phase using the GGA + U. Notably, the CrSe and CrTe using the mBJ-GGA + U approach are a half-semiconductor (HSC) in the WZ phase. The HSC gaps are 0.94 and 0.25 eV for CrSe and CrTe compounds, respectively, while CrS has a HM gap of 2.30 eV. We observed a HSC-to-HM transition for the CrSe and CrTe crystal structures on application of strain. The CrS, CrSe, and CrTe compounds have a total magnetic moment of 4.0 µB per formula unit with the magnetization predominantly from the Cr ion. The main features observed from the density of states and strain evolution should motivate further experimental exploration on the possible application of the CrS, CrSe, and CrTe compounds for spintronic applications.

Keywords

Density functional theory Ferromagnetism Half-metals Half-semiconductors Transition metals 

Notes

Acknowledgements

B. B. acknowledges the Algerian Academy of Sciences and Technology (AAST) and the Abdus-Salam International Center for Theoretical Physics (ICTP, Trieste, Italy).

Funding Information

K. O. O. thanks Moritz Braun and the University of South Africa for the financial support.

References

  1. 1.
    De Groot, R., Mueller, F., Van Engen, P., Buschow, K.: Phys. Rev. Lett. 50, 2024 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    He, J., Zhou, P., Jiao, N., Chen, X., Lu, W., Sun, L.Z.: RSC Adv. 5, 46640 (2015)CrossRefGoogle Scholar
  3. 3.
    Rudberg, E., Saek, P., Luo, Y.: Nano Lett. 7, 2211 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Saad, M.M.H.-E.: J. Phys. Chem. Solids 94, 1 (2016)Google Scholar
  5. 5.
    Yoo, J.-W., Chen, C.-Y., Jang, H., Bark, C., Prigodin, V., Eom, C., Epstein, A.: Nat. Mater. 9, 638 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Yao, K.L., Gao, G.Y., Liu, Z.L., Zhu, L.: Solid State Commun. 133, 301 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Guo, S.-D., Liu, B.-G.: Europhys. Lett. 88, 67007 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Yun, W.S., Hong, S.C.: J. Korean Phys. Soc. 53, 384 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Shoren, H., Ikemoto, F., Yoshida, K., Tanaka, N., Motizuki, K.: Phys. E. 10, 242 (2001)CrossRefGoogle Scholar
  10. 10.
    Zhao, Y.-J., Zunger, A.: Phys. Rev. B 71, 132403 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Xie, W.-H., Xu, Y.-Q., Liu, B.-G., Pettifor, D.: Phys. Rev. Lett. 91, 037204 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Hazrati, E., Hashemifar, S.J., Akbarzadeh, H.: J. Appl. Phys. 104, 113719 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Xie, W.-H., Liu, B.-G., Pettifor, D.G.: Phys. Rev. B 68, 134407 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Liu, Y., Bose, S.K., Kudrnovský, J.: Phys. Rev. B 82, 094435 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Ahmadian, F., Abolhassani, M., Hashemifar, S., Elahi, M.: J. Magn. Magn. Mater. 322, 1004 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Zhang, M., Brück, E., de Boer, F.R., Liu, G., Hu, H., Liu, Z., Cui, Y., Wu, G.: J. Mater. Res. 19, 2738 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Galanakis, I., Mavropoulos, P.: Phys. Rev. B 67, 104417 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Eto, T., Ishizuka, M., Endo, S., Kanomata, T., Kikegawa, T.: J. Alloys Compd. 315, 16 (2001)CrossRefGoogle Scholar
  19. 19.
    Gao, G.Y., Yao, W., Han, H.P., Khalaf Al-zyadi, J.M., Yao, K.L.: J. Appl. Phys. 112, 103709 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Kanchana, V., Vaitheeswaran, G., Rajagopalan, M.: J. Magn. Magn. Mater. 250, 353 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    Dijkstra, J., Van Bruggen, C., Haas, C., de Groot, R.: J. Phys. Condens. Mat. 1, 9163 (1989)ADSCrossRefGoogle Scholar
  22. 22.
    Nakada, K., Shimizu, H., Yamada, H.: J. Magn. Magn. Mater. 272–276(1), 464 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    Yaji, K., Kimura, A., Hirai, C., Taniguchi, M., Koyama, M., Sato, H., Shimada, K., Tanaka, A., Muro, T., Imada, S.: Phys. Rev. B 70, 064402 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Sreenivasan, M.G., Bi, J.F., Teo, K.L., Liew, T.: J. Appl. Phys. 103, 043908 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Bi, J.F., Sreenivasan, M.G., Teo, K.L., Liew, T.: J. Phys. D Appl. Phys. 41, 045002 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Sato, H., Koyama, M., Takada, K., Okuda, H., Shimada, K., Ueda, Y., Ghijsen, J., Taniguchi, M.: J. Electron Spectrosc. 333, 88–91 (1998)Google Scholar
  27. 27.
    Djefal, A., Amari, S., Obodo, K., Beldi, L., Bendaoud, H., Bouhafs, B.: Int. J. Comput. Mater. Sci. Eng. 6, 1750027 (2017)Google Scholar
  28. 28.
    Djefal, A., Amari, S., Obodo, K., Beldi, L., Bendaoud, H., Evans, R., Bouhafs, B.: Spin 07, 1750009 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Obodo, K.O., Chetty, N.: J. Phys. Condens. Mat. 25, 145603 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Obodo, K.O., Chetty, N.: J. Nucl. Mater. 442, 235 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Şaşıoğlu, E., Friedrich, C., Blügel, S.: Phys. Rev. B 83, 121101 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Şaşıoğlu, E., Galanakis, I., Friedrich, C., Blügel, S.: Phys. Rev. B 88, 134402 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Austria (2012)Google Scholar
  34. 34.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    Şaşıoğlu, E., Galanakis, I., Friedrich, C., Blügel, S.: Phys. Rev. B 88, 134402 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Santos-Carballal, D., Roldan, A., Grau-Crespo, R., de Leeuw, N.H.: Phys. Rev. B 91, 195106 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Tran, F., Blaha, P.: Phys. Rev. Lett. 102, 226401 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    Tran, F., Blaha, P.: Phys. Rev. B 83, 235118 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Monkhorst, H.J., Pack, J.D.: Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Modélisation et Simulation en Sciences des MatériauxUniversité Djillali Liabès de Sidi-Bel-AbbèsSidi Bel AbbèsAlgeria
  2. 2.Department of PhysicsUniversity of South AfricaPretoriaSouth Africa
  3. 3.Institut des SciencesCentre Universitaire d’Ain TemouchentAin TemouchentAlgeria

Personalised recommendations