Advertisement

Pressure-Enhanced Transitional Transport of Electronic Fluids in EuFe2As2

  • Chu R. Kwang-HuaEmail author
  • Zhi-Hui Li
Original Paper
  • 62 Downloads

Abstract

We demonstrate the effect of very high pressure on the pressure-enhanced transitional transport of electronic fluids in EuFe2As2 as well as the frictionless transport of many (condensed) electrons in EuFe2As2 by using the verified absolute reaction approach which is borrowed from the quantum chemistry. Our results demonstrate that tuning of high pressure could enhance the onset temperature of transitional transport of electronic fluids in EuFe2As2 to around 128 K.

Keywords

Pressure effect Absolute reaction Transition state 

Notes

Acknowledgements

Authors thank the Referees for their valuable comments. The 2nd author (E-mail zhli0097@x263.net) is supported by the National Key Basic Research and Development Program (2014CB744100) and the National Natural Science Foundation (11325212) of China.

References

  1. 1.
    Kokail, C., von der Linden, W., Boeri, L.: Phys. Rev. Mater. 1(7), 074803 (2017)CrossRefGoogle Scholar
  2. 2.
    Hershman, D.R., Fiory, A.T.: J. Phys. Condens. Matter 29(44), 445702 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Nature 525, 73–77 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Kruglov, I.A., Kvashnin, A.G., Goncharov, A.F., Oganov, A.R., Lobanov, S., Holtgrewe, N., Yanilkin, A.V.: arXiv:1708.05251
  5. 5.
    Chu, A.K.-H.: arXiv:cond-mat/0412514
  6. 6.
    Kumar, R.S., Zhang, Y., Thamizhavel, A., Svane, A., Vaitheeswaran, G., Kanchana, V., Xiao, Y., Chow, P., Chen, C., Zhao, Y.S.: Appl. Phys. Lett. 104, 042601 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Kurita, N., Kimata, M., Kodama, K., Harada, A., Tomita, M., Suzuki, H.S., Matsumoto, T., Murata, K., Uji, S., Terashima, T.: Phys. Rev. B 88, 224510 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Tsvyashchenko, A.V., Sidorov, V.A., Fomicheva, L.N., Gofryk, K., Sadykov, R.A., Thompson, J.D.: Phys. Status Solidi B 250, 589–592 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Uhoya, W.O., Tsoi, G.M., Vohra, Y.K., Mcguire, M.A., Sefat, A.S.: J. Phys.-Cond. Matter 23, 365703 (2011)CrossRefGoogle Scholar
  10. 10.
    Matsubayashi, K., Munakata, K., Isobe, M., Katayama, N., Ohgushi, K., Ueda, Y., Kawamura, N., Mizumaki, M., Ishimatsu, N., Hedo, M., Umehara, I., Uwatoko, Y.: Phys. Rev. B 84, 024502 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Morozova, N.V., Karkin, A.E., Ovsyannikov, S.V., Umerova, Y.A., Shchennikov, V.V., Mittal, R., Thamizhavel, A.: Superconductor Sci. Techn. 28(12), 125010 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Bardeen, J.: Phys. Rev. Lett. 1, 399–401 (1958)ADSCrossRefGoogle Scholar
  13. 13.
    Eyring, H., Kimball, G.E., Walter, J.: Quantum Chemistry. Wiley, New York (1944)Google Scholar
  14. 14.
    Eyring, H.: J. Chem. Phys. 4, 283–291 (1936)ADSCrossRefGoogle Scholar
  15. 15.
    Kwang-Hua, C.W.: Chem. Phys. 415, 186–189 (2013)CrossRefGoogle Scholar
  16. 16.
    Chu, Z.K.-H.: J. Appl. Phys. 108, 074906 (2010). (figure 6 is related to the superconductivity)ADSCrossRefGoogle Scholar
  17. 17.
    Fiolhais, M.C.N., Essn, H.: Int. J. Theor. Phys 52, 1701–1705 (2013)CrossRefGoogle Scholar
  18. 18.
    Kwang-Hua, C.W.: J. Supercond. Nov. Magn. 26, 315–319 (2013)CrossRefGoogle Scholar
  19. 19.
    Kurita, N., Kimata, M., Kodama, K., Harada, A., Tomita, M., Suzuki, H.S., Matsumoto, T., Murata, K., Uji, S., Terashima, T.: Phys. Rev. B 83, 214513 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Barber, M.E., Gibbs, A.S., Maeno, Y., Mackenzie, A.P., Hicks, C.W.: Phys. Rev. Lett. 120, 076602 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    Aslam, M., Singh, C.K., Das, S., Kumar, R., Datta, S., Halder, S., Gayen, S., Kabir, M., Sheet, G.: arXiv:1709.04949
  22. 22.
    Ali, K., Adhikary, G., Thakur, S., Patil, S., Mahatha, S.K., Thamizhavel, A., De Ninno, G., Moras, P., Sheverdyaeva, P.M., Carbone, C., Petaccia, L., Maiti, K.: Phys. Rev. B 97, 054505 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    Veshchunov, I.S., Vinnikov, L.Ya., Stolyarov, V.S., Zhou, N., Shi, Z.X., Xu, X.F., Grebenchuk, S.Yu., Baranov, D.S., Golovchanskiy, I.A., Pyon, S., Sun, Y., Jiao, W., Cao, G., Tamegai, T., Golubov, A.A.: JETP Lett. 105, 87 (2017)CrossRefGoogle Scholar
  24. 24.
    Baumgartner, A., Neubauer, D., Zapf, S., Pronin, A.V., Jiao, W.H., Cao, G.H., Dressel, M.: Phys. Rev. B 95, 174522 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Zhang, W. -L., Sefat, A.S., Ding, H., Richard, P., Blumberg, G.: Phys. Rev. B 94, 014513 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Zapf, S., Sting, C., Post, K.W., Maiwald, J., Bach, N., Pietsch, I., Neubauer, D., Löhle, A., Clauss, C., Jiang, S., Jeevan, H.S., Basov, D.N., Gegenwart, P., Dressel, M.: Phys. Rev. Lett. 113, 227001 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Müller, K.A.: J. Supercond. Nov. Magn. 30, 3007–3018 (2017)CrossRefGoogle Scholar
  28. 28.
    Rybicki, D., Jurkutat, M., Reichardt, S., Kapusta, C., Haase, J.: Nat. Commmun. 7, 11413 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Oleaga, A., Salazar, A., Thamizhavel, A., Dhar, S.K.: J. Alloys Compounds 617, 534–537 (2014)CrossRefGoogle Scholar
  30. 30.
    Pelliciari, J., Ishii, K., Dantz, M., Lu, X., McNally, D.E., Strocov, V.N., Xing, L., Wang, X., Jin, C., Jeevan, H.S., Gegenwart, P., Schmitt, T.: Phys. Rev. B 95, 115152 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    Gor’kov, L., Kresin, V.: Rev. Mod. Phys. 90, 011001 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Training Centre, BUAABeijingChina
  2. 2.National Laboratory for Computational Fluid DynamicsBUAABeijingChina
  3. 3.State Key Laboratory of AerodynamicsChina Aerodynamics Research and Development CenterMianyangChina
  4. 4.Hypervelocity Aerodynamics InstituteChina Aerodynamics Research and Development CenterMianyangChina
  5. 5.FuzhouChina

Personalised recommendations