Effect of Ce3+ Ion on Structural and Hyperfine Interaction Studies of Co0.5Ni0.5Fe2−xCexO4 Ferrites: Useful for Permanent Magnet Applications

  • K. M. Srinivasamurthy
  • V. Jagadeesha AngadiEmail author
  • S. P. Kubrin
  • Shiddaling Matteppanavar
  • D. A. Sarychev
  • B. Rudraswamy
Original Paper


Nanoparticles of Co0.5Ni0.5Fe2−xCexO4 (where x = 0.0, 0.01, 0.015 and 0.02) ferrites are prepared by the modified solution combustion method using a mixture of fuels and are characterized to understand their structural, microstructural and magnetic properties. The X-ray diffraction is used to confirm the formation of a single-phase cubic spinel structure. The average crystallite sizes are calculated using the Scherrer formula and are found to be less than 50 nm. The microstructural features are obtained by the scanning electron microscopy, and the compositional analysis is done by using the energy-dispersive spectroscopy. The transmission electron microscopy (TEM) investigations show that the synthesized ferrites are made up of very fine spherical nanoparticles. The influence of a rare-earth element (Ce3+) on the magnetic properties of the samples was studied using the Mössbauer spectroscopy. The Mössbauer spectroscopy reveals the formation of broadened Zeeman lines and quadrupole-split lines and the presence of the Fe3+ charge state at B sites in the samples. The quadrupole splitting shows that the orientation of the magnetic hyperfine field with respect to the principle axes of the electric field gradient was random. The magnetic hyperfine field values indicate that the A sites have more A-O-B superexchange interactions than the B sites. The coexistence of magnetic sextet and a doublet component on the room-temperature spectra suggests superparamagnetic properties of the nanoparticles. The low-temperature (15 K) Mössbauer spectroscopy explores the paramagnetic relaxation in the nanoparticles. The area under the sextet refers to Fe3+ concentrations in the tetrahedral and octahedral sites of the ferrite. This study confirms that the Ce3+ substitution of Fe3+ only for octahedron sites causes the decrease in Fe-O-Fe arrangement. The effect of Ce3+ doping on the magnetic properties of Co0.5Ni0.5Fe2O4 is examined from the vibrating sample magnetometry (VSM) spectra. Saturation magnetization values are decreased initially and then increased, as result of Ce3+ doping. This can be explained by Neel’s two-sub-lattice model. Further, the value of coercivity is found to be increasing with increasing Ce3+ concentration. The obtained results of M-H loop with improved coercivity (from 851 to 1039 Oe) by Ce3+ doping of Co0.5Ni0.5Fe2O4 demonstrate the usefulness for permanent magnet applications.


Rietveld refinement Mossbauer spectroscopy Superparamagnetic relaxation Nanoparticles 



The authors would like to express their sincere thanks to Ms. A. M. Tejashwini of the Department of Humanity, Vijayanagar College, Hospet, for her valuable input to increase the quality of the manuscript.

Funding Information

This work was supported by the Ministry of Education and Science of the Russian Federation (Project No. 3.5346.2017/8.9).


  1. 1.
    Sanchez-Marcos, J., Mazario, E., Rodriguez-Velamazan, J.A., Salas, E., Herrasti, P., Menendez, N.: Cation distribution of cobalt ferrite electrosynthesized nanoparticles. A methodological comparison. J. Alloy. Compd. 739, 909–917 (2018)CrossRefGoogle Scholar
  2. 2.
    Zalnėravicius, R., Paskevicius, A., Mazeika, K., Jagminas, A.: Fe(II)-substituted cobalt ferrite nanoparticles against multidrug resistant microorganisms. Appl. Surf. Sci. 435, 141–148 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    Kumar, L., Kumar, P., Kuncser, V., Greculeasa, S., Sahoo, B., Kar, M.: Strain induced magnetism and superexchange interaction in Cr substituted nanocrystalline cobalt ferrite. Mater. Chem. Phys. 211, 54–64 (2018)CrossRefGoogle Scholar
  4. 4.
    Motavallian, P., Abasht, B., Abdollah-Pour, H.: Zr doping dependence of structural and magnetic properties of cobalt ferrite synthesized by sol-gel based Pechini method. J. Magn. Magn. Mater. 451, 577–586 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    Barrera, G., Coisson, M., Celegato, F., Raghuvanshi, S., Mazaleyrat, F., Kane, S.N., Tiberto, P.: Cation distribution effect on static and dynamic magnetic properties of Co1−xZnxFe2O4 ferrite powders. J. Magn. Magn. Mater. 456, 372–380 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    Song, N., Gu, S., Wu, Q., Li, C., Zhou, J., Zhang, P., Wang, W., Yue, M.: Facile synthesis and high-frequency performance of CoFe2O4 nanocubes with different size. J. Magn. Magn. Mater. 456, 793–798 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    Lyubutin, I.S., Starchikov, S.S., Baskakov, A.O., Gervits, N.E., Lin, C.-R., Tseng, Y.-T., Lee, W.-J., Shih, K.-Y.: Exchange-coupling of hard and soft magnetic sublattices and magnetic anomalies in mixed spinel NiFe0.75Cr1.25O4 nanoparticles. J. Magn. Magn. Mater. 451, 336–343 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Mondal, R, Dey, S, Sarkar, K, Dasgupta, P, Kumar, S: Influence of high energy ball milling on structural parameters, cation distribution and magnetic enhancement of nanosized Co0.3Zn0.7Fe2O4. Mater. Res. Bull. 102, 160–171 (2018)CrossRefGoogle Scholar
  9. 9.
    Sharmaa, R, Komal, Kumar, V, Bansal, S, Singhal, S: Boosting the catalytic performance of pristine CoFe2O4 with yttrium (Y3+) inclusion in the spinel structure. Mater. Res. Bull. 90, 94–103 (2017)CrossRefGoogle Scholar
  10. 10.
    Humbe, A.V., Kounsalye, J.S., Shisode, M.V., Jadhav, K.M.: Rietveld refinement, morphology and superparamagnetic of nanocrystalline Ni0.70−xCuxZn0.30Fe2O4 spinel ferrite. Ceram. Int. 44, 5466–5472 (2018)CrossRefGoogle Scholar
  11. 11.
    Gore, S.K., Mane, R.S., Naushad, Mu., Jadhav, S.S., Zate, M.K., Alothman, Z.A., Hui, B.K.N.: Influence of Bi3+-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite. Dalton Trans. 44, 6384–6390 (2015)CrossRefGoogle Scholar
  12. 12.
    Gawas, S.G., Meena, S.S., Yusuf, S.M., Verenkar, V.M.S.: Anisotropy and domain state dependent enhancement of single domain ferrimagnetism in cobalt substituted Ni-Zn ferrites. New J. Chem. 40, 9275–9284 (2016)CrossRefGoogle Scholar
  13. 13.
    Nordhei, C., Lund Ramstad, A., Nicholson, D.G.: Nanophase cobalt, nickel and zinc ferrites: synchrotron XAS study on the crystallite size dependence of metal distribution. Phys. Chem. Chem. Phys. 10, 1053–1066 (2008)CrossRefGoogle Scholar
  14. 14.
    Kumar, G., Kotnala, R.K., Shah, J., Kumar, V., Kumar, A., Singh, P.D.M.: Cation distribution: a key to ascertain the magnetic interactions in a cobalt substituted Mg–Mn nanoferrite matrix. Phys. Chem. Chem. Phys. 19, 16669–16680 (2017)CrossRefGoogle Scholar
  15. 15.
    Fayek, M.K., Bahgat, A.A.: Fe57 Mossbauer study in cobalt substituted magnetite. Z. Phys. B-Condens. Matter 46, 199–205 (1982)ADSCrossRefGoogle Scholar
  16. 16.
    Ndlovu, B., Msomi, J.Z., Moyo, T.: Mössbauer and electrical studies of NixCo1−xFe2O4 nanoparticles. J. Alloys Compd. 749, 672–680 (2018)CrossRefGoogle Scholar
  17. 17.
    Nikumbh, A.K., Nagawade, A.V., Tadke, V.B., Bakare, P.P.: Electrical, magnetic and Mossbauer properties of cadmium - cobalt ferrites prepared by the tartarate precursor method. J. Mater. Sci. 36, 653–662 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    Rao, G.S.N., Caltun, O.F., Rao, K.H., Parvatheeswara Rao, B., Ajay Gupta, S.N.R., Rao, A., Kumar, M.: Mössbauer and magnetic study of silicon substituted cobalt ferrite. Hyperfine Interact. 184, 51–55 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Rusanov, V., Gushterov, V., Nikolov, S., Trautwein, A.X.: Detailed Mössbauer study of the cation distribution in CoFe2O4 ferrites. Hyperfine Interact. 191, 67–74 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Chauhan, L., Singh, N., Dhar, A., Kumar, H., Kumar, S., Sreenivas, K.: Structural and electrical properties of Dy3+ substituted NiFe2O4 ceramics prepared from powders derived by combustion method. Ceram. Int. 43, 8378–8390 (2017)CrossRefGoogle Scholar
  21. 21.
    Tsvetkov, M., Milanova, M., Pereira, L.C.J., Waerenborgh, J.C., Cherkezova-Zheleva, Z., Zaharieva, J., Mitov, I.: Magnetic properties of binary and ternary mixed metal oxides NiFe2O4 and Zn0.5Ni0.5Fe2O4 doped with rare earths by sol–gel synthesis. Chem. Pap. 70, 1600–1610 (2016)CrossRefGoogle Scholar
  22. 22.
    Bhasker, U., Yelasani, V., Ramana, V., Musugu, R.: Structural, electrical and Magnetic characteristics of nickel substituted cobalt ferrite nano particles, synthesized by self combustion method. J. Magn. Magn. Mater. 374, 376–380 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Jagadeesha Angadi, V, Rudraswamy, B, Sadhana, K., Praveena, K: Structural and magnetic properties of manganese zinc ferrite nanoparticles prepared by solution combustion method using mixture of fuels. J. Magn. Magn. Mater. 409, 111–115 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Jagadeesha Angadi, V., Rudraswamy, B., Sadhana, K., Ramana Murthy, S., Praveena, K.: Effect of Sm3+-Gd3+ on structural, electrical and magnetic properties of Mn-Zn ferrites synthesized via combustion route. J. Alloy. Compd. 656, 5–12 (2016)CrossRefGoogle Scholar
  25. 25.
    Ranjith Kumar, E., Jayaprakash, R., Kumar, S.: The role of annealing temperature and bio template (egg white) on the structural, morphological and magnetic properties of manganese substituted MFe2O4 (M=Zn, Cu, Ni, Co) nanoparticles. J. Magn. Magn. Mater. 351, 70–75 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Srinivasamurthy, K.M., Jagadeesha, A.V., Kubrin, S.P., Matteppanavar, S., Sarychev, D.A., Mohan Kumar, P., Workineh Azale, H., Rudraswamy, B.: Tuning of ferrimagnetic nature and hyperfine interaction of Ni2+ doped cobalt ferrite nanoparticles for power transformer applications. Accepted manuscript. Ceram. Int. (2018)CrossRefGoogle Scholar
  27. 27.
    Angadi, V.J., Anupama, A.V., Kumar, R., Matteppanavar, S., Rudraswamy, B., Sahoo, B.: Observation of enhanced magnetic pinning in Sm3+ substituted nanocrystalline Mn–Zn ferrites prepared by propellant chemistry route. J. Alloys Compd. 682, 263–274 (2016)CrossRefGoogle Scholar
  28. 28.
    Matsnev, M.E., Rusakov, V.S.: SpectrRelax: an application for Mössbauer spectra modeling and fitting. AIP Conf. Proc. 1489, 178–185 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Küdning, W., Bömmel, H.: Some properties of supported small α-Fe2O3 particles determined with the Mossbauer effect. Phys. Rev. 142, 327–333 (1966)ADSCrossRefGoogle Scholar
  30. 30.
    Bodker, F., Mørup, S.: Size dependence of the properties of hematite nanoparticles. Europhys. Lett. 52 (2), 217–223 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    Chuev, M.A.: On the shape of gamma-resonance spectra of ferrimagnetic nanoparticles under conditions of metamagnetism. JETP Lett. 98(8), 465–470 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Menil, F.: Systematic trends of the 57Fe Mossbauer isomer shifts in (FeOn) and (FeFn) polyhedra. Evidence of a new correlation between the isomer shift and the inductive effect of the competing bond T-X (*Fe) (where X is O or F and T any element with a formal positive charge). J. Phys. Chem. Solids. 46(7), 763–789 (1985)ADSCrossRefGoogle Scholar
  33. 33.
    Vandenberghe, R.E., Grave, E.D.: Mossbauer effect studies of oxidic spinels. In: Long, G.J., Grandjean, F. (eds.) Mössbauer spectroscopy applied to inorganic chemistry, vol. 3, pp 59–172. Springer Science & Business Media, New York (1989)Google Scholar
  34. 34.
    Jagdeesha Angadi, V., Choudhury, L., Sadhana, K., Liu, H.-L., Sandhya, R., Matteppanavar, S., Rudraswamy, B., Pattar, V., Anavekar, R.V., Praveena, K.: Structural, electrical and magnetic properties of Sc3+ doped Mn-Zn Ferrite nanoparticles. J. Magn. Magn. Mater. 424, 1–11 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Jagadeesha Angadi, V., Anupama, A.V., Harish, K., Choudhary, R., Kumar, H.M., Somashekarappa, M., Mallappa, B., Rudraswamy, B.: Sahoo: Mechanism of γ-irradiation induced phase transformations in nanocrystalline Mn0.5Zn0.5Fe2O4 ceramics. J. Solid State Chem. 246, 119–124 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • K. M. Srinivasamurthy
    • 1
  • V. Jagadeesha Angadi
    • 2
    Email author
  • S. P. Kubrin
    • 3
  • Shiddaling Matteppanavar
    • 4
  • D. A. Sarychev
    • 3
  • B. Rudraswamy
    • 1
  1. 1.Department of PhysicsBangalore UniversityBangaloreIndia
  2. 2.Department of Physics, School of EngineeringPresidency UniversityBangaloreIndia
  3. 3.Research Institute of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  4. 4.Department of PhysicsM. S. Ramaiah University of Applied SciencesBangaloreIndia

Personalised recommendations