Electronic Structure, Elastic, Magnetic, and Optical Properties of Fe2MnZ (Z = Si, Ge, and Sn) Full Heusler Alloys: First-Principle Calculations

  • Vivek Kumar Jain
  • N. LakshmiEmail author
  • Rakesh Jain
  • Aarti Rani Chandra
Original Paper


Investigations of the electronic structure, elastic, magnetic, and optical properties of Fe2MnZ (Z = Si, Ge, and Sn) full Heusler alloys show mechanical stability with cubic symmetry in all three alloys. They are elastically anisotropic and Fe2MnSi is ductile whereas Fe2MnGe and Fe2MnSn are brittle in nature. The value of total magnetic moment is 3 \({\upmu }_{\mathrm {B}}\) for Fe2MnSi and Fe2MnGe at their equilibrium lattice constants and follows the Slater–Pauling curve. Fe2MnSn possess the largest magnetic moment among the three with a value of 5.73 \({\upmu }_{\mathrm {B}}\) at equilibrium lattice constant. Fe2MnSi shows half-metallic nature with 100% spin polarization for a wide range of lattice parameters and is useful for spintronics devices. Good optical properties over wide photon energies point to the possible use of these alloys as radiation shielding materials, optical filters, and photo-electronic devices.


Heusler alloy Half metallicity Magnetic moment Optical conductivity Elastic constants Band structure 


Funding Information

This work is supported by UGC-DSA and DST-FIST schemes of the Department of Physics, Mohanlal Sukhadia University, Udaipur. Vivek Kumar Jain acknowledges the support from UGC-BSR fellowship scheme, and Aarti Rani Chandra is thankful for fellowship from SERB-DST EMR scheme.


  1. 1.
    Fujii, S., Ishida, S., Asano, S.: A half-metallic band structure and Fe2MnZ (Z = Al, Si, P). J. Phys. Soc. Jpn. 64(1), 185–191 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    Yin, M., Nash, P., Chen, S.: Enthalpies of formation of selected Fe2YZ Heusler compounds. Intermetallics 57, 34–40 (2015)CrossRefGoogle Scholar
  3. 3.
    Gupta, D.C., Bhat, I.H.: Full-potential study of Fe2NiZ (Z \(=\) Al, Si, Ga, Ge). Mater. Chem. Phys. 146(3), 303–312 (2014)CrossRefGoogle Scholar
  4. 4.
    Brown, P.J., Ziebeck, K.R.A., Huntley, J.M.: Magnetisation density in the Heusler alloy Fe2MnSi. J. Magn. Magn. Mater. 50(2), 169–177 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    Sugihara, A., Mizukami, S., Yamada, Y., Koike, K., Miyazaki, T.: High perpendicular magnetic anisotropy in D022-Mn3 + xGe tetragonal Heusler alloy films. Appl. Phys. Lett. 104(13), 132404–132407 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Vinesh, A., Bhargava, H., Lakshmi, N., Venugopalan, K.: Magnetic anisotropy induced by high energy ball milling of Fe2MnAl. J. Appl. Phys. 105(7), 07A309 (2009)CrossRefGoogle Scholar
  7. 7.
    Kumaran, J.T.T., Bansal, C.: A Mössbauer effect investigation of Fe hyperfine fields in Fe3−xMnxSi alloys. Solid State Commun. 69(7), 779–783 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    Azar, S.M., Hamad, B.A., Khalifeh, J.M.: Structural, electronic and magnetic properties of Fe3−xMnxZ (Z \(=\) Al, Ge, Sb) Heusler alloys. J. Magn. Magn. Mater. 324(10), 1776–1785 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Sarkar, S., Bansal, C.: Disorder–order and structural phase transformations in nanocrystalline Fe3−xMnxGe alloys synthesized by mechanical alloying. J. Alloys Compd. 366(1–2), 107–119 (2004)CrossRefGoogle Scholar
  10. 10.
    Hamaya, K., Itoh, H., Nakatsuka, O., Ueda, K., Yamamoto, K., Itakura, M., Taniyama, T., Ono, T., Miyao, M.: Ferromagnetism and electronic structures of nonstoichiometric Heusler-alloy Fe3−xMnxSi epilayers grown on Ge(111). Phys. Rev. Lett. 102(13), 137204–137207 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Sandalov, I., Zamkova, N., Zhandun, V., Tarasov, I., Varnakov, S., Yakovlev, I., Solovyov, L., Ovchinnikov, S.: Effect of electron correlations on the Fe3Si and \(\alpha \)-FeSi2 band structure and optical properties. Phys. Rev. B 92(20), 205129 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Sorokin, P.B., Avramov, P.V., Kvashnin, A.G., Kvashnin, D.G., Ovchinnikov, S.G., Fedorov, A.S.: Density functional study of \(\langle 110\rangle \)-oriented thin silicon nanowires. Phys. Rev. B 77(23), 235417 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Wang, S., Yu, J.: Magnetic behaviors of 3d transition metal-doped silicane: a first-principle study. Journal of Superconductivity and Novel Magnetism (2018)Google Scholar
  14. 14.
    Sun, M., Ren, Q., Zhao, Y., Chou, J.-P., Yu, J., Tang, W.: Electronic and magnetic properties of 4d series transition metal substituted graphene: a first-principles study. Carbon 120, 265–273 (2017)CrossRefGoogle Scholar
  15. 15.
    Tang, W., Sun, M., Yu, J., Chou, J.-P.: Magnetism in non-metal atoms adsorbed graphene-like gallium nitride monolayers. Appl. Surf. Sci. 427, 609–612 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    Sun, M., Ren, Q., Zhao, Y., Wang, S., Yu, J., Tang, W.: Magnetism in transition metal-substituted germanane: a search for room temperature spintronic devices. J. Appl. Phys. 119(14), 143904 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Sun, M., Tang, W., Ren, Q., Wang, S.-K., Yu, J., Du, Y.: A first-principles study of light non-metallic atom substituted blue phosphorene. Appl. Surf. Sci. 356, 110–114 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Sun, M., Tang, W., Ren, Q., Zhao, Y., Wang, S., Yu, J., Du, Y., Hao, Y.: Electronic and magnetic behaviors of graphene with 5d series transition metal atom substitutions: a first-principles study. Physica E: Low-dimensional Systems and Nanostructures 80, 142–148 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Sun, M., Wang, S., Du, Y., Yu, J., Tang, W.: Transition metal doped arsenene: a first-principles study. Appl. Surf. Sci. 389, 594–600 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Wang, S., Wang, J.: Spin and valley half-metal state in MoS2 monolayer. Phys. B Condens. Matter 458, 22–26 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Reshak, A.H.: Fe2MnSixGe1−x: influence thermoelectric properties of varying the germanium content. RSC Adv. 4(74), 39565–39571 (2014)CrossRefGoogle Scholar
  22. 22.
    Bhat, T.M., Gupta, D.C.: Robust thermoelectric performance and high spin polarisation in CoMnTiAl and FeMnTiAl compounds. RSC Adv. 6(83), 80302–80309 (2016)CrossRefGoogle Scholar
  23. 23.
    Shreder, E.I., Svyazhin, A.D., Fomina, K.A.: Optical properties of Fe2NiAl and Fe2MnAl Heusler alloys. Phys. Met. Metallogr. 113(2), 146–152 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Sharma, S., Pandey, S.K.: Effect of on-site Coulomb interaction (U) on the electronic and magnetic properties of Fe2MnSi, Fe2MnAl and Co2MnGe. J. Magn. Magn. Mater. 403, 1–7 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Zhang, L., Brück, E., Tegus, O., Buschow, K.H.J., De Boer, F.R.: The crystallization of amorphous Fe2MnGe powder prepared by ball milling. J. Alloys Compd. 352(1), 99–102 (2003)CrossRefGoogle Scholar
  26. 26.
    Lakshmi, N., Jain, V., Venugopalan, K.: High energy ball milling study of Fe2MnSn Heusler alloy. AIP Conf. Proc. 1665(1), 130032 (2015)Google Scholar
  27. 27.
    Katsuyama, S., Kobayashi, T.: Effect of mechanical milling on thermoelectric properties of half-Heusler ZrNiSn0.98Sb0.02 intermetallic compound. Mater. Sci. Eng. B 166(1), 99–103 (2010)CrossRefGoogle Scholar
  28. 28.
    Chandra, A.R., Jain, V., Jain, V.K., Jain, R., Lakshmi, N., Venugopalan, K.: Structural and magnetic properties of high energy Ball milled Co2FeAl0.5Si0.5 Heusler alloy. AIP Conf. Proc. 1832(1), 130019 (2017)CrossRefGoogle Scholar
  29. 29.
    Jain, V.K., Jain, V., Lakshmi, N., Venugopalan, K.: First principle electronic structure of Co2FeAl (100) on GaAs (100) substrate. Quantum Matter 5(3), 319–321 (2016)CrossRefGoogle Scholar
  30. 30.
    Ze-Jin, Y., Qing-He, G., Heng-Na, X., Ju-Xiang, S., Xian-Wei, W., Zhi-Jun, X.: Pressure-induced magnetic moment abnormal increase in Mn2FeAl and non-continuing decrease in Fe2MnAl via first principles. Sci. Rep. 7(1), 16522–16530 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    Faleev, S.V., Ferrante, Y., Jeong, J., Samant, M.G., Jones, B., Parkin, S.S.: Heusler compounds with perpendicular magnetic anisotropy and large tunneling magnetoresistance. Phys. Rev. Mater. 1(2), 024402 (2017)CrossRefGoogle Scholar
  32. 32.
    Faleev, S.V., Ferrante, Y., Jeong, J., Samant, M.G., Jones, B., Parkin, S.S.: Origin of the tetragonal ground state of heusler compounds. Phys. Rev. Appl. 7(3), 034022 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    Faleev, S.V., Ferrante, Y., Jeong, J., Samant, M.G., Jones, B., Parkin, S.S.: Unified explanation of chemical ordering, the Slater-Pauling rule, and half-metallicity in full Heusler compounds. Phys. Rev. B 95(4), 045140 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    Kurtulus, Y., Dronskowski, R., Samolyuk, G.D., Antropov, V.P.: Electronic structure and magnetic exchange coupling in ferromagnetic full Heusler alloys. Phys. Rev. B 71(1), 014425 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    Yin, M., Nash, P.: The effect of a fourth element (Co, Cu, Fe, Pd) on the standard enthalpy of formation of the Heusler compound Ni2MnSn. J. Alloys Compd. 667, 184–190 (2016)CrossRefGoogle Scholar
  36. 36.
    Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B 66(17), 174429 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    Blaha, P., Schwarz, K., Sorantin, P., Tricky, S.B.: Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59(2), 399–415 (1990)ADSCrossRefGoogle Scholar
  38. 38.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    Inomata, K., Ikeda, N., Tezuka, N., Goto, R., Sugimoto, S., Wojcik, M., Jedryka, E.: Highly spin-polarized materials and devices for spintronics. Sci. Technol. Adv. Mater. 9(1), 014101 (2008)CrossRefGoogle Scholar
  40. 40.
    Graf, T., Fecher, G.H., Barth, J., Winterlik, J., Felser, C.: Electronic structure and transport properties of the Heusler compound Co2TiAl. J. Phys. D. Appl. Phys. 42(8), 084003 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    Umetsu, R.Y., Kobayashi, K., Kainuma, R., Yamaguchi, Y., Ohoyama, K., Sakuma, A., Ishida, K.: Powder neutron diffraction studies for the L21 phase of Co2YGa (Y \(=\) Ti, V, Cr, Mn and Fe). Heusler alloys J. Alloys Compd. 499(1), 1–6 (2010)CrossRefGoogle Scholar
  42. 42.
    Belkhouane, M., Amari, S., Yakoubi, A., Tadjer, A., Méçabih, S., Murtaza, G., Khenata, R.: First-principles study of the electronic and magnetic properties of Fe2MnAl, Fe2MnSi and Fe2MnSi0.5Al0.5. J. Magn. Magn. Mater. 377, 211–214 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    Mori, H., Odahara, Y., Shigyo, D., Yoshitake, T., Miyoshi, E.: Electronic band structure calculations on thin films of the L21 full Heusler alloys X2YSi (X, Y \(=\) Mn, Fe, and Co): toward spintronic materials. Thin Solid Films 520(15), 4979–4983 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    Hongzhi, L., Zhiyong, Z., Li, M., Shifeng, X., Heyan, L., Jingping, Q., Yangxian, L., Guangheng, W.: Electronic structure and magnetic properties of Fe2YSi (Y \(=\) Cr, Mn, Fe, Co, Ni) Heusler alloys: a theoretical and experimental study. J. Phys. D. Appl. Phys. 40(22), 7121 (2007)CrossRefGoogle Scholar
  45. 45.
    Hamad, B., Charifi, Z., Baaziz, H., Soyalp, F.: A DFT study of the electronic and magnetic properties of Fe2MnSi1−xGex alloys. J. Magn. Magn. Mater. 324(20), 3345–3350 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    Zhang, L., Brück, E., Tegus, O., Buschow, K.J., De Boer, F.R.: The crystallographic phases and magnetic properties of Fe2MnSi1−xGex. Phys. B Condens. Matter 328(3-4), 295–301 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    Rodríguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter 192(1–2), 55–69 (1993)ADSCrossRefGoogle Scholar
  48. 48.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k, an augmented-plane-wave local orbitals program for calculating crystal properties, Karlheinz Schwarz. Techn, Wien, Austria. ISBN 3-9501031-1-2 (2001)Google Scholar
  49. 49.
    Sun, Z., Li, S., Ahuja, R., Schneider, J. M.: Calculated elastic properties of M2AlC (M \(=\) Ti, V, Cr, Nb and Ta). Solid State Commun. 129(9), 589–592 (2004)ADSCrossRefGoogle Scholar
  50. 50.
    Jasiukiewicz, C., Karpus, V.: Debye temperature of cubic crystals. Solid State Commun. 128(5), 167–169 (2003)ADSCrossRefGoogle Scholar
  51. 51.
    Wachter, P., Filzmoser, M., Rebizant, J.: Electronic and elastic properties of the light actinide tellurides. Phys. B Condens. Matter 293(3), 199–223 (2001)ADSCrossRefGoogle Scholar
  52. 52.
    Mehl, M.J., Osburn, J.E., Papaconstantopoulos, D.A., Klein, B.M.: Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations. Phys. Rev. B 41(15), 10311 (1990)ADSCrossRefGoogle Scholar
  53. 53.
    Mehl, M.J.: Pressure dependence of the elastic moduli in aluminum-rich Al-Li compounds. Phys. Rev. B 47 (5), 2493 (1993)ADSCrossRefGoogle Scholar
  54. 54.
    Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65(5), 349 (1952)ADSCrossRefGoogle Scholar
  55. 55.
    Pettifor, D.G.: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8(4), 345–349 (1992)CrossRefGoogle Scholar
  56. 56.
    Pugh, S.F.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45(367), 823–843 (1954)CrossRefGoogle Scholar
  57. 57.
    Frantsevich, I., Voronov, F., Bokuta, S., Frantsevich, I.: Elastic constants and elastic moduli of metals and insulators handbook, pp. 60–180. Naukova Dumka, Kiev (1983)Google Scholar
  58. 58.
    Jain, R., Jain, V.K., Chandra, A.R., Jain, V., Lakshmi, N.: Study of the electronic structure, magnetic and elastic properties and half-metallic stability on variation of lattice constants for CoFeCrZ (Z= P, As, Sb) Heusler alloys. Journal of Superconductivity and Novel Magnetism, pp. 1–11 (2017)Google Scholar
  59. 59.
    Dresselhaus, M.S., Dresselhaus, M.S.: Optical properties of solids. In: Tauc, J. (ed.) Proceedings of the International School of Physics Enrico Fermi. Academic Press, New York (1966)Google Scholar
  60. 60.
    Sun, J., Wang, H.T., He, J., Tian, Y.: Ab initio investigations of optical properties of the high-pressure phases of ZnO. Phys. Rev. B 71(12), 125132 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vivek Kumar Jain
    • 1
  • N. Lakshmi
    • 1
    Email author
  • Rakesh Jain
    • 1
  • Aarti Rani Chandra
    • 1
  1. 1.Department of PhysicsMohanlal Sukhadia UniversityUdaipurIndia

Personalised recommendations