Advertisement

Realization of Magnetostructural Transition and Magnetocaloric Properties of Ni–Mn–Mo–Sn Heusler Alloys

  • Ishfaq Ahmad Shah
  • Najam ul Hassan
  • Abudu keremu
  • Saira Riaz
  • Shahzad Naseem
  • Feng Xu
  • Zaka UllahEmail author
Original Paper

Abstract

As magnetic cooling refrigerant, Ni–Mn–Sn Heusler alloys have gained significant potentials for a wide range of practical applications as compared with other expensive Ga-doped Ni–Mn based Heusler alloys, toxic As and P doped Mn-based alloys and rare-earth elements like Gd-based alloys. Consequently, an inclusive investigation on magnetostructural transition and magnetocaloric features of Ni43Mn47−xMoxSn10 alloys is carried out. The alloys are assembled through arc-melting technique and their X-ray diffraction analysis confirms their B2-type crystal structure at room temperature. As the Mo contents are increased, the magnetostructural transition temperature increases for a temperature range between Curie temperature of austenite and martensite phases. Obvious metamagnetic behavior and magnetic hysteresis are observed in isothermal magnetization curves, suggesting that the temperature and magnetic field can be used as robust tools for tuning the structural transformation in Heusler alloys. The noticeable magnetocaloric effect suggests that the prepared alloys can be an attractive choice for magnetic refrigeration applications.

Keywords

Ni–Mn–Sn alloys Magnetostructural transition Magnetic entropy change Magnetocaloric effect 

Notes

Funding Information

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11604148, 51571121, and 51601092), Fundamental Research Funds for the Central Universities (Grant Nos. 30916011344 and 30916011345), China Postdoctoral Science Foundation Funded Project (Grant No 2016M591851), Natural Science Foundation of Jiangsu Province (Grant Nos. BK20160833 BK20160829, and BK20140035), Qing Lan Project of Jiangsu Province, and Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

  1. 1.
    Matjaz, V.: Electrocaloric materials for future solid-state refrigeration technologies. Prog. Mater. Sci. 57, 980–1009 (2012)CrossRefGoogle Scholar
  2. 2.
    Shah, I.A., Hassan, N., Rauf, A., Liu, J., Gong, Y.Y., Xu, G.Z., Xu, F.: Influence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni48−x,Co2Mn38+xSn12 (x = 0, 1.0, 1.5, 2.0 and 2.5) ferromagnetic shape memory alloys. Chin. Phys. B 26, 097501 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Lyubina, J.: Magnetocaloric materials for energy efficient cooling. J. Phys. D: Appl. Phys. 50, 053002 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Han, Z.D., Wang, D.H., Qian, B., Feng, J.F., Jiang, X.F., Du, Y.W.: Phase transitions, magnetocaloric effect and magnetoresistance in Ni–Co–Mn–Sn ferromagnetic shape memory alloy. J. Appl. Phys. 49, 010211 (2010)CrossRefGoogle Scholar
  5. 5.
    Quetz, A., Koshkidko, Y.S., Titov, I., Rodionov, I., Pandey, S., Aryal, A., Ibarra-Gaytan, P.J., Prudnikov, V., Granovsky, A., Dubenko, I., Samanta, T., Cwik, J., Llamazares, J.L.S., Stadler, S., Lahderanta, E., Ali, N.: Giant reversible inverse magnetocaloric effects in Ni50Mn35In15 Heusler alloys. J. Alloy. Compd. 683, 139–142 (2016)CrossRefGoogle Scholar
  6. 6.
    Prabahar, K., Kumar, D.M.R., Raja, M.M., Palit, M., Chandrasekaran, V.: Solidification behavior and microstructural correlations in magnetocaloric Gd–Si–Ge–Nb alloys. Mater. Sci. Eng. B. 172, 294–299 (2010)CrossRefGoogle Scholar
  7. 7.
    Yuzuak, E., Dincer, L., Elerman, Y.: Magnetocaloric properties of the Gd5Si2.05−xGe1.95−xMn2x compounds. J. Rare Earths 28, 477–480 (2010)CrossRefGoogle Scholar
  8. 8.
    Radulov, I.A., Skokov, K.P., Karpenkov, D., Gottschall, Y.T., Gutfleisch, O.: On the preparation of La(Fe-Mn-Si)13 H x polymer-composites with optimized magnetocaloric properties. J. Magn. Magn. Mater. 396, 228–236 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Shan, X.R., Huang, R., Han, Y., Huang, C.J.C., Li, L.F.: Preparation and property study of La(Fe, Si, Co)13/Cu composite with nearly zero thermal expansion behavior. J. Alloy. Compd. 648, 463–466 (2015)CrossRefGoogle Scholar
  10. 10.
    Yue, M., Zhang, H.G., Liu, D.M., Zhang, J.X.: Mnfe (P-Ge) compounds: preparation, structural evolution and magnetocaloric effects. Chin. Phys. B 24, 017505 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Zhao, Y.Y., Hu, F.X., Bao, L.F., Wang, J., Wu, H., Huang, Q.Z., Wu, R.R., Liu, Y., Shen, F.R., Kuang, H., Zhang, M., Zuo, W.L., Zheng, X.Q., Sun, J.R., Shen, B.G.: Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure. J. Am. Chem. Soc. 137, 1746–1749 (2015)CrossRefGoogle Scholar
  12. 12.
    Liu, J., Gong, Y.Y., Xu, G.Z., Peng, G., Shah, I.A., Hassan, N., Xu, F.: Realization of magnetostructural coupling by modifying structural transitions in MnNiSi-CoNiGe system with a wide Curie-temperature window. Sci. Rep. 6, 23386 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Franco, V., Blazquez, J.S., Ingale, B., Conde, A.: The magnetocaloric effectand magnetic refrigeration near room temperature: materials and models. Ann. Rev. Mater. Res. 42, 305–42 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Sozinov, A., Lanska, N., Soroka, A., Zou, W.: 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite. Appl. Phys. Lett. 102, 021902 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Ghosh, A., Mandal, K.A.: Comparative study of magnetocaloric properties between Ni-rich and Mn-rich Ni-Mn-Sn alloy. IEEE Trans. Magn. 50, 1–4 (2014)CrossRefGoogle Scholar
  16. 16.
    Yu, G.H., Xu, L.Y., Liu, Z.H., Qiu, H.M., Zhu, Z.Y., Huang, XP, Pan, L.Q.: Recent progress in Heusler-type magnetic shape memory alloys. Rare Metals 34, 527–539 (2015)CrossRefGoogle Scholar
  17. 17.
    Dong, G.F., Cai, W., Gao, Z.Y.: Microstructure and martensitic transformation of Ni–Mn–Ga–Ti. J. Alloy. Compd. 465, 173 (2008)CrossRefGoogle Scholar
  18. 18.
    Han, Z.D., Wang, D.H., Zhang, C.L., Xuan, H.C., Gu, B.X., Du, Y.W.: Low-field inverse magnetocaloric effect in Ni50−xMn39+xSn11 Heusler alloys. Appl. Phys. Lett. 90, 042507 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Chen, F., Tong, Y.X., Tian, B., Li, L., Zheng, Y.F., Liu, Y.: Magnetic-field-induced reverse transformation in a NiCoMnSn high temperature ferromagnetic shape memory alloy. J. Magn. Magn. Mater. 347, 72 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Shen, B.G., Sun, J.R., Hu, F.X., Zhang, H.W., Cheng, Z.H.: Recent progress in exploring magnetocaloric materials. Adv. Mater. 21, 4545–4564 (2009)CrossRefGoogle Scholar
  21. 21.
    Emre, B., Bruno, N.M., Emre, S.Y., Karaman, I.: Effect of niobium addition on the martensitic transformation and magnetocaloric effect in low hysteresis NiCoMnSn magnetic shape memory alloys. Appl. Phys. Lett. 105, 231910 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Han, Z., Chen, X., Zhang, Y., Chen, J., Qian, B., Jiang, X.F., Wang, D.H., Du, Y.W.: Martensitic transformation and magnetocaloric effect in Mn–Ni–Nb–Sn shape memory alloys: the effect of 4d transition-metal doping. J. Alloy. Compd. 515, 114 (2012)CrossRefGoogle Scholar
  23. 23.
    Muthu, S.E., Rao, N.V.R., Raja, M.M., Kumar, D.M.R., Radheep, D.M., Arumugam, S.: Influence of Ni/Mn concentration on the structural, magnetic and magnetocaloric properties in Ni50−xMn37+xSn13 Heusler alloys. J. Phys. D: Appl. Phys. 43, 425002 (2010)CrossRefGoogle Scholar
  24. 24.
    Maziarz, W., Czaja, P., Szczerba, M.J., Dobrzynska, L.L., Czeppe, T., Dutkiewicz, J.: Influence of Ni/Mn concentration ratio on microstructure and martensitic transformation in melt spun Ni–Mn–Sn Heusler alloy ribbons. J. Alloy. Compd. 615, S173 (2014)CrossRefGoogle Scholar
  25. 25.
    Zheng, H., Wang, W., Xue, S., Zhai, Q., Frenzel, J., Luo, Z.: Composition-dependent crystal structure and martensitic transformation in Heusler Ni–Mn–Sn alloys. Acta Mater. 61, 4648 (2013)CrossRefGoogle Scholar
  26. 26.
    Huang, L., Cong, D.Y., Suo, H.L., Wang, Y.D.: Giant magnetic refrigeration capacity near room temperature in Ni40Co10Mn40Sn10 multifunctional alloy. Appl. Phys. Lett. 104, 132407 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Ma, S.C., Wang, D.H., Zhong, Z.C., Luo, J.M., Xu, J.L., Du, Y.W.: Peculiarity of magnetoresistance in high pressure annealed Ni43Mn41Co5Sn11 alloy. Appl. Phys. Lett. 102, 4358 (2013)Google Scholar
  28. 28.
    Wang, R.L., Yan, J.B., Xiao, H.B., Xu, L.S., Marchenkov, V.V., Xu, L.F., Yang, C.P.: Effect of electron density on the martensitic transition in Ni–Mn–Sn alloys. J. Alloy. Compd. 509, 6834–6837 (2011)CrossRefGoogle Scholar
  29. 29.
    Xuan, H.C., Han, P.D., Wang, D.H., Du, Y.W.: The influence of Ge substitution on the magnetostucture transition and magnetocaloric effect of Mn–Ni–Sn–Ge alloys. J. Alloy. Compd. 582, 369 (2014)CrossRefGoogle Scholar
  30. 30.
    Varzaneh, A.G., Kameli, P., Karimzadeh, F., Aslibeiki, B., Varvaro, G., Salamati, H.: Magnetocaloric effect in Ni47Mn40Sn13 alloy prepared by mechanical alloying. J. Alloy. Compd. 598, 6–10 (2014)CrossRefGoogle Scholar
  31. 31.
    Chen, F., Tong, Y.X., Li, L., Llamazares, J.L.S., Sanchez-Valdés, C.F., Mullner, P.: Broad first-order magnetic entropy change curve in directionally solidified polycrystalline Ni-CoMn-In. J. Alloy. Compd. 727, 603–609 (2017)CrossRefGoogle Scholar
  32. 32.
    Benford, S.M., Brown, G.V.: TS Diagram for gadolinium near the Curie temperature. J. Appl. Phys. 52, 2110 (1981)ADSCrossRefGoogle Scholar
  33. 33.
    Krenke, T., Duman, E., Acet, M., Moya, X., Manosa, L., Planes, A.: Effect of Co and Fe on the inverse magnetocaloric properties of Ni-Mn-Sn. J. Appl. Phys. 102, 033903 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Sharma, V.K., Chattopadhyay, M.K., Roy, S.B.: Large magnetocaloric effect in Ni50Mn33.66Cr0.34In16 alloy. J. Phys. D: Appl. Phys. 43, 225001 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Brock, J., Khan, M.: Large refrigeration capacities near room temperature in Ni2Mn1−xCrxIn. J. Magn. Magn. Mater. 425, 1–5 (2017)CrossRefGoogle Scholar
  36. 36.
    Zhang, H., Li, R., Xu, T., Liu, F., Zhang, T.: Near room-temperature magnetocaloric effect in femnPBC metallic glasses with tunable Curie temperature. J. Magn. Magn. Mater. 347, 131–135 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    Pathak, A.K., Dubenko, I., Karaca, H.E., Stadler, S., Ali, N.: Large inverse magnetic entropy changes and magnetoresistance in the vicinity of a field-induced martensitic transformation in Ni50−xCoxMn32−yFeyGa18. Appl. Phys. Lett. 97, 062505 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    Stadler, S., Khan, M., Mitchell, J., Ali, N., Gomes, A. M., Dubenko, I., Takeuchi, A.Y., Guimaraes, A.P.: Magnetocaloric properties of Ni2Mn1−xCuxGa. Appl. Phys. Lett. 88, 192511 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    Phan, T.L., Zhang, P., Dan, N.H., Yen, N.H., Thanh, P.T., Thanh, T.D., Phan, M.H., Yu, S.C.: Coexistence of conventional and inverse magnetocaloric effects and critical behaviors in Ni50Mn50−xSnx (x = 13 and 14) alloy ribbons. Appl. Phys. Lett. 101, 212403 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    Sahoo, R., Nayak, A.K., Suresh, K.G., Nigam, A.K.: Structural, magnetic, magnetocaloric and magnetotransport properties in Ge doped Ni–Mn–Sb Heusler alloys. J. Magn. Magn. Mater. 324, 1267 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    Li, Z.B., Zhang, Y.D., Sanchez-Valdes, C.F., Sanchez-Llamazares, J.F., Esling, C., Zhao, X., Zuo, L.: Giant magnetocaloric effect in melt-spun Ni-Mn-Ga ribbons with magneto-multistructural transformation. Appl. Phys. Lett. 104, 044101 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    Zhang, Y., Zhang, L.L., Zheng, Q., Zheng, X.Q., Li, M., Du, J., Yan, A.: Enhanced magnetic refrigeration properties in Mn-rich Ni-Mn-Sn ribbons by optimal annealing. Sci. Rep. 5, 11010 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    Sharma, V., Chattopadhyay, M.K., Roy, S.B.: Large inverse magnetocaloric effect in Ni50Mn34In16. J. Phys. D: Appl. Phys. 40, 1869 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, School of Materials Science and EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China
  2. 2.Centre of Excellence in Solid State PhysicsUniversity of the PunjabLahorePakistan

Personalised recommendations