Advertisement

No Signature of Room Temperature Ferromagnetism in Fe-Doped ITO Thin Films

  • Deepannita Chakraborty
  • S. KaleemullaEmail author
Original Paper
  • 107 Downloads

Abstract

Iron (Fe)-doped indium tin oxide thin films (In0.95 − xFexSn0.05)2O3 at x = 0.00, 0.05, 0.10, and 0.15 were deposited onto glass substrates using an electron beam evaporation technique. The coated thin films were characterized by X-ray diffractometer (XRD), UV-VIS-NIR spectrophotometer, photoluminescence spectrophotometer, scanning electron microscope, and vibrating sample magnetometer to study their structural, optical, morphological, and magnetic properties, respectively. The crystallite size of the films increased from 18 to 30 nm with Fe concentration (x). The morphology showed the formation of nanorods. The bandgap of the films decreased from 3.94 to 3.81 eV. The X-ray photoelectron spectroscopy (XPS) studies confirm the presence of Fe ions in two different oxidation states (Fe2+, Fe3+). The magnetic studies revealed the paramagnetic behavior of the films at room temperature and at low temperature (5 K). The effective magnetic moment (μeff) of Fe-doped indium tin oxide thin films was calculated using Langevin theory of paramagnetism extending to Curie’s law. The effective magnetic moment (μeff) was increased on increasing the dopant concentration.

Keywords

XPS Paramagnetism Skyrmions Electron beam evaporation Shallow trapping centers Chirality 

Notes

Acknowledgments

The authors are grateful to UGC-DAE-CSR, IGCAR, Kalpakkam, 603102, Tamil Nadu, India, for providing financial support under Project Sanction number (CSR-KN/CRS-72/2015-2016/809) to carry out the present work. The authors are very thankful to VIT-SIF for providing XRD and DRS facilities to carry out the present work. The authors are grateful to National Physical Laboratory (NPL, New Delhi) for providing the PL spectrophotometer. The authors are also thankful to UGC-DAE-CSR, IGCAR, for providing VSM facility.

References

  1. 1.
    Freeman, A.J., Poeppelmeier, K.R., Mason, T.O., Chang, R.P.H., Marks, T.J.: MRS Bull.  https://doi.org/10.1557/mrs2000.150 (2011)CrossRefGoogle Scholar
  2. 2.
    Granqvist, C.G.: Appl. Phys. A.  https://doi.org/10.1007/BF00323721 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    Granqvist, C.G., Hultåker, A.: Thin Solid Films.  https://doi.org/10.1016/S0040-6090(02)00163-3 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Hamberg, I., Granqvist, C.G.: J. Appl. Phys.  https://doi.org/10.1063/1.337534 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    Kılıç, Ç., Zunger, A: Phys. Rev. Lett.  https://doi.org/10.1103/PhysRevLett.88.095501 (2002)
  6. 6.
    Lewis, B.G., Paine, D.C.: MRS Bull.  https://doi.org/10.1557/mrs2000.147 (2011)CrossRefGoogle Scholar
  7. 7.
    Phillips, J.M., Cava, R.J., Thomas, G.A., Carter, S.A., Kwo, J., Siegrist, T., Krajewski, J.J., Marshall, J.H., Peck, W.F., Rapkine, D.H.: Appl. Phys. Lett.  https://doi.org/10.1063/1.115118 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    Wang, R., King, L.L.H., Sleight, A.W.: J. Mater. Res.  https://doi.org/10.1557/JMR.1996.0208 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M., Hosono, H.: Science.  https://doi.org/10.1126/science.1083212 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Azevedo, S., Diéguez, L., Carvalho, P., Carneiro, J.O., Teixeira, V., Martínez, E., Samitier, J.: J Nano Res 17, 75 (2012)CrossRefGoogle Scholar
  11. 11.
    Li, X., Li, C., Wang, D., Pradeep, C., Furuta, M., Hatta, A.: . In: 2013 Twentieth International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), pp 177–180 (2013)Google Scholar
  12. 12.
    Alam, M.J., Cameron, D.C.: Thin Solid Films.  https://doi.org/10.1016/S0040-6090(00)01369-9 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Chamberlin, R.R., Skarman, J.S.: J. Electrochem. Soc. 113, 86 (1966)CrossRefGoogle Scholar
  14. 14.
    Danson, N., Safi, I., Hall, G.W., Howson, R.P.: Surf. Coat. Technol.  https://doi.org/10.1016/S0257-8972(97)00436-2 (1998)CrossRefGoogle Scholar
  15. 15.
    Furuta, M., Kawaharamura, T., Wang, D., Toda, T., Hirao, T.: IEEE Electron Dev. Lett.  https://doi.org/10.1109/LED.2012.2192902 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Geoffroy, C., Campet, G., Portier, J., Salardenne, J., Couturier, G., Bourrel, M., Chabagno, J.M., Ferry, D., Quet, C.: Thin Solid Films.  https://doi.org/10.1016/0040-6090(91)90543-7 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    Seo, H., Aihara, S., Watabe, T., Ohtake, H., Sakai, T., Kubota, M., Egami, N., Hiramatsu, T., Matsuda, T., Furuta, M., Hirao, T.: Jpn. J. Appl. Phys. 50, 024103 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Jin, Z.-C., Hamberg, I., Granqvist, C.G.: Appl. Phys. Lett.  https://doi.org/10.1063/1.99008 (1987)ADSCrossRefGoogle Scholar
  19. 19.
    Kim, J.S., Granström, M., Friend, R.H., Johansson, N., Salaneck, W.R., Daik, R., Feast, W.J., Cacialli, F.: J. Appl. Phys.  https://doi.org/10.1063/1.368981 (1998)ADSCrossRefGoogle Scholar
  20. 20.
  21. 21.
    Lippens, P., Segers, A., Haemers, J., De Gryse, R.: Thin Solid Films.  https://doi.org/10.1016/S0040-6090(97)00632-9 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    Maki, K., Komiya, N., Suzuki, A.: Thin Solid Films.  https://doi.org/10.1016/j.tsf.2003.08.021 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    Furuta, M., Kamada, Y., Hiramatsu, T., Li, C., Kimura, M., Fujita, S., Hirao, T.: Jpn. J. Appl. Phys. 50, 03CB09 (2011)CrossRefGoogle Scholar
  24. 24.
    Maruyama, T., Fukui, K.: Thin Solid Films.  https://doi.org/10.1016/0040-6090(91)90137-M (1991)ADSCrossRefGoogle Scholar
  25. 25.
  26. 26.
  27. 27.
    Shanthi, E., Banerjee, A., Dutta, V., Chopra, K.L.: Thin Solid Films.  https://doi.org/10.1016/0040-6090(80)90160-1 (1980)ADSCrossRefGoogle Scholar
  28. 28.
    Sakai, T., Seo, H., Aihara, S., Kubota, M., Egami, N., Wang, D., Furuta, M.: Jpn. J. Appl. Phys. 51, 010202 (2012)ADSGoogle Scholar
  29. 29.
    Vasu, V., Subrahmanyam, A.: Thin Solid Films.  https://doi.org/10.1016/0040-6090(90)90221-X (1990)ADSCrossRefGoogle Scholar
  30. 30.
    Singhal, R.K., Samariya, A., Kumar, S., Sharma, S.C., Xing, Y.T., Deshpande, U. P., Shripathi, T., Saitovitch, E: Appl. Surf. Sci.  https://doi.org/10.1016/j.apsusc.2010.07.106 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Ma, R.-R., Jiang, F.-X., Qin, X.-F., Xu, X.-H.: Mater. Chem. Phys.  https://doi.org/10.1016/j.matchemphys.2011.12.014 (2012)CrossRefGoogle Scholar
  32. 32.
    Xiao, Z.R., Fan, X.F., Guan, L.X., Huan, C.H.A., Kuo, J.L., Wang, L.: J. Phys. Condens. Matter 21, 272202 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Wu, K., Gu, S., Tang, K., Zhu, S., Zhou, M., Huang, Y., Xu, M., Zhang, R., Zheng, Y: Physica B: Condens. Matter.  https://doi.org/10.1016/j.physb.2012.03.040 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Yu, Z.G., He, J., Xu, S., Xue, Q., van’t Erve, O.M.J., Jonker, B.T., Marcus, M. A., Yoo, Y.K., Cheng, S., Xiang, X.-D.: Phys. Rev. B.  https://doi.org/10.1103/PhysRevB.74.165321 (2006)
  35. 35.
    Harinath Babu, S., Kaleemulla, S., Madhusudhana Rao, N., Krishnamoorthi, C.: J. Magn. Magn. Mater.  https://doi.org/10.1016/j.jmmm.2016.05.007 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    Huang, L.M., Moysés Araújo, C., Ahuja, R.: Eur. Phys. Lett. 87, 27013 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    Chakraborty, D., Kaleemulla, S., Madhusudhana Rao, N., Venugopal Rao, G.: J. Mater. Sci. Mater. Electron.  https://doi.org/10.1007/s10854-017-7851-0 (2017)Google Scholar
  38. 38.
    Cullity, B.D.: Elements of X-Ray Diffraction, p 78. Addison-Wesley, Reading (1972)Google Scholar
  39. 39.
    Lagerstedt, O., Monemar, B.: Phys. Rev. B.  https://doi.org/10.1103/PhysRevB.19.3064 (1979)ADSCrossRefGoogle Scholar
  40. 40.
    Leszczyński, M., Litwin-Staszewska, E., Suski, T., Ba̧k-Misiuk, J., Domagała, J.: Acta Phys. Pol. A 88, 837 (1995)CrossRefGoogle Scholar
  41. 41.
    Sen, S., Halder, S.K., Sen Gupta, S.P.: J. Phys. Soc. Jpn.  https://doi.org/10.1143/JPSJ.38.1641 (1975)ADSCrossRefGoogle Scholar
  42. 42.
    Pathinettam Padiyan, D., Marikani, A., Murali, K.R.: Mater. Chem. Phys.  https://doi.org/10.1016/S0254-0584(02)00211-0 (2003)CrossRefGoogle Scholar
  43. 43.
    Fallah, H.R., Ghasemi, M., Hassanzadeh, A., Steki, H.: Mater. Res. Bull.  https://doi.org/10.1016/j.materresbull.2006.06.024 (2007)CrossRefGoogle Scholar
  44. 44.
    Chen, Z.C., Zhuge, L.J., Wu, X.M., Meng, Y.D.: Thin Solid Films.  https://doi.org/10.1016/j.tsf.2007.01.015 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    Xin, B.F., Jing, L.Q., Fu, H.G., Sun, Z.H., Ren, Z.Y., Wang, B.Q., Cai, W.M.: Gaodeng Xuexiao Huaxue Xuebao/Chem. J. Chin. Univ.  https://doi.org/10.1016/j.jssc.2004.05.064 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    Chastain, J., King, R.C., Moulder, J.: Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data (Physical Electronics Division). Perkin-Elmer Corporation Eden Prairie, Minnesota (1992)Google Scholar
  47. 47.
    Majumdar, H.S., Majumdar, S., Tobjörk, D., Österbacka, R.: Synth. Met.  https://doi.org/10.1016/j.synthmet.2009.04.010 (2010)CrossRefGoogle Scholar
  48. 48.
    An, Y., Xing, Y., Pan, F., Wu, Z., Liu, J.: Phys. Chem. Chem. Phys.  https://doi.org/10.1039/C6CP01315E(2016)
  49. 49.
    Jiang, F.-X., Xi, S.-B., Ma, R.-R., Qin, X.-F., Fan, X.-C., Zhang, M.-G., Zhou, J.-Q., Xu, X.-H.: Chin. Phys. Lett. 30, 047501 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    Khan, G.G., Ghosh, S., Sarkar, A., Mandal, G., Mukherjee, G.D., Manju, U., Banu, N., Dev, B.N.: J. Appl. Phys.  https://doi.org/10.1063/1.4928952 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    Stankiewicz, J., Villuendas, F., Bartolomé, J.: Phys. Rev. B.  https://doi.org/10.1103/PhysRevB.75.235308(2007)
  52. 52.
    Xia, B., Wu, Y., Ho, H.W., Ke, C., Song, W.D., Huan, C.H.A., Kuo, J.L., Zhu, W.G., Wang, L: Phys. B Condens. Matter.  https://doi.org/10.1016/j.physb.2011.05.016 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    Yoo, Y.K., Xue, Q., Lee, H.-C., Cheng, S., Xiang, X.D., Dionne, G.F., Xu, S., He, J., Chu, Y.S., Preite, S.D., Lofland, S.E., Takeuchi, I.: Appl. Phys. Lett.  https://doi.org/10.1063/1.1854720 (2005)ADSCrossRefGoogle Scholar
  54. 54.
    Bernardi, M.I.B., Mesquita, A., Beron, F., Pirota, K.R., de Zevallos, A.O., Doriguetto, A.C., de Carvalho, H.B.: Phys. Chem. Chem. Phys.  https://doi.org/10.1039/C4CP04879B (2015)CrossRefGoogle Scholar
  55. 55.
    Pappas, C., Lelièvre-Berna, E., Falus, P., Bentley, P.M., Moskvin, E., Grigoriev, S., Fouquet, P., Farago, B.: Phys. Rev. Lett.  https://doi.org/10.1103/PhysRevLett.102.197202 (2009)
  56. 56.
    Leonov, A.A., Bogdanov, A.N., Rößler, U.K.: arXiv preprint (2010)Google Scholar
  57. 57.
    Wilson, M.N., Butenko, A.B., Bogdanov, A.N., Monchesky, T.L.: Phys. Rev. B.  https://doi.org/10.1103/PhysRevB.89.094411 (2014)
  58. 58.
    Tokunaga, Y., Yu, X.Z., White, J.S., Rønnow, H.M., Morikawa, D., Taguchi, Y., Tokura, Y.: Nat. Commun.  https://doi.org/10.1038/ncomms8638 (2015)
  59. 59.
    Wiesendanger, R.: Nat. Rev. Mater.  https://doi.org/10.1038/natrevmats.2016.44 (2016)
  60. 60.
    Akyol, M., Ekicibil, A., Kiymaç, K.: J. Supercond. Nov. Magn.  https://doi.org/10.1007/s10948-013-2135-2(2013)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Thin Films Laboratory, School of Advanced SciencesVellore Institute of TechnologyVelloreIndia
  2. 2.Thin Films Laboratory, Centre for Crystal GrowthVellore Institute of TechnologyVelloreIndia

Personalised recommendations