Advertisement

Laser Source Influence on the Preferential Growth and the Inversion Degree in Pulsed Laser CoFe2O4 Films

  • E. López-Moreno
  • H. MontielEmail author
  • A. Conde
  • G. Alvarez
Original Paper
  • 86 Downloads

Abstract

A comparative study between cobalt ferrite films deposited by pulsed laser deposition as a function of the laser sources, 355 nm (Nd:YAG) and 248 nm (KrF excimer), on amorphous quartz (AQ) and < 100 > -oriented silicon wafer (SW) at different temperatures (650–800 C) is presented. Also, a quantitative estimation of the preferential crystalline growth orientation as laser source function was made by means of Lotgering factor and Harris texture coefficient, which were obtained from XRD patterns. The inversion degree in spinel-type structure for cobalt ferrite films was calculated through a deconvolution in Raman spectra, where the band A1g vibrating modes in tetrahedral sites were associated with Fe and Co sites (687 and 611 cm−1, respectively). Additionally, saturation magnetization was also calculated from the inversion degree obtained from deconvolution of the Raman spectra in CoFe2O4 films, being compared with experimental results, which is in a good agreement with cobalt ferrite bulk, and we also correlated the preferential growth and the particle size with increment of the coercive field.

Keywords

CoFe2O4 films Raman spectroscopy Spinel inversion degree 

Notes

Acknowledgments

The authors acknowledge the LUCE for the Raman measurements, and Carlos Flores Morales (IIM-UNAM) and Adriana Tejeda Cruz (IIM-UNAM) for the AFM and GIXRD measurements, respectively. We like to thank C. Sanchez-Aké for providing the PLD system and R. Sato for the discussion. Finally, E. López-Moreno thanks the CONACyT, Mexico, for the scholar grant no. 255468.

Funding Information

This work was financially supported by the DGAPA-UNAM, through the PAPIIT grant no. IG100517.

References

  1. 1.
    Cullity, B.D., Graham, C.D.: Introduction to magnetic materials. Cullity.  https://doi.org/10.1016/S1369-7021(09)70091-4 (2009)
  2. 2.
    Khaja Mohaideen, K., Joy, P.A.: High magnetostriction and coupling coefficient for sintered cobalt ferrite derived from superparamagnetic nanoparticles. Appl. Phys. Lett. 101.  https://doi.org/10.1063/1.4745922 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Caltun, O.F., Rao, G.S.N., Rao, K.H., Rao, B.P., Kim, C., Kim, C. -O., Dumitru, I., Lupu, N., Chiriac, H.: High magnetostrictive cobalt ferrite for sensor applications. Sens. Lett. 5, 45–47 (2007).  https://doi.org/10.1166/sl.2007.027 CrossRefGoogle Scholar
  4. 4.
    Suzuki, Y., Hu, G., van Dover, R.B.B., Cava, R.J.J.: Magnetic anisotropy of epitaxial cobalt ferrite thin films. J. Magn. Magn. Mater. 191, 1–8 (1999).  https://doi.org/10.1016/S0304-8853(98)00364-3 ADSCrossRefGoogle Scholar
  5. 5.
    Ramos, A.V., Guittet, M.J., Moussy, J.B., Mattana, R., Deranlot, C., Petroff, F., Gatel, C.: Room temperature spin filtering in epitaxial cobalt-ferrite tunnel barriers. Appl. Phys. Lett. 91.  https://doi.org/10.1063/1.2787880 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Nlebedim, I.C., Jiles, D.C.: Suitability of cation substituted cobalt ferrite materials for magnetoelastic sensor applications. Smart Mater Struct. 24.  https://doi.org/10.1088/0964-1726/24/2/025006 (2015)CrossRefGoogle Scholar
  7. 7.
    Giri, A.K., Kirkpatrick, E.M., Moongkhamklang, P., Majetich, S.A., Harris, V.G.: Photomagnetism and structure in cobalt ferrite nanoparticles. Appl. Phys. Lett. 80, 2341–2343 (2002).  https://doi.org/10.1063/1.1464661 ADSCrossRefGoogle Scholar
  8. 8.
    Stichauer, L., Gavoille, G., Simsa, Z.: Optical and magneto-optical properties of nanocrystalline cobalt ferrite films. J. Appl. Phys. 79, 3645–3650 (1996).  https://doi.org/10.1063/1.361192 ADSCrossRefGoogle Scholar
  9. 9.
    Scott, B.L., Radu, C., Smith, D.A., Stokes, K.L.: Magneto-optical study of cobalt ferrite nanoparticles. In: Tms 2008 annual meeting supplemental proceedings, vol 3 Gen. Pap. Sel., pp 399–404 (2008)Google Scholar
  10. 10.
    Raghunathan, A., Nlebedim, I.C., Jiles, D.C., Snyder, J.E.: Growth of crystalline cobalt ferrite thin films at lower temperatures using pulsed-laser deposition technique. J. Appl. Phys. 107.  https://doi.org/10.1063/1.3357315(2010)
  11. 11.
    Zheng, H.: Multiferroic BaTiO3-CoFe2O4 nanostructures. Science (80). 303, 661–663 (2004).  https://doi.org/10.1126/science.1094207 ADSCrossRefGoogle Scholar
  12. 12.
    Ferreira, T.A.S., Waerenborgh, J.C., Mendonça, M.H.R.M., Nunes, M.R., Costa, F.M.: Structural and morphological characterization of FeCo2O4 and CoFe2O4 spinels prepared by a coprecipitation method. Solid State Sci. 5, 383–392 (2003).  https://doi.org/10.1016/S1293-2558(03)00011-6 ADSCrossRefGoogle Scholar
  13. 13.
    Na, J.G., Lee, T.D., Park, S.J.: Effects of cation distribution on magnetic properties in cobalt ferrite. J. Mater. Sci. Lett. 12, 961–962 (1993).  https://doi.org/10.1007/BF00455632 CrossRefGoogle Scholar
  14. 14.
    Haneda, K., Morrish, A.H.: Noncollinear magnetic structure of CoFe2O4 small particles. J. Appl. Phys. 63, 4258–4260 (1988).  https://doi.org/10.1063/1.340197 ADSCrossRefGoogle Scholar
  15. 15.
    Sawatzky, G.A., Van Der Woude, F., Morrish, A.H.: Mössbauer study of several ferrimagnetic spinels. Phys. Rev. 187, 747–757 (1969).  https://doi.org/10.1103/PhysRev.187.747 ADSCrossRefGoogle Scholar
  16. 16.
    Sawatzky, G.A., Van Der Woude, F., Morrish, A.H.: Cation distributions in octahedral and tetrahedral sites of the ferrimagnetic spinel CoFe2O4. J. Appl. Phys. 39, 1204–1205 (1968).  https://doi.org/10.1063/1.1656224 ADSCrossRefGoogle Scholar
  17. 17.
    Hassan, R.S., Viart, N., Ulhaq-Bouillet, C., Loison, J.L., Versini, G., Vola, J.P., Crégut, O., Pourroy, G., Muller, D., Chateigner, D.: Structural properties of cobalt ferrite thin films deposited by pulsed laser deposition: effect of the reactive atmosphere. Thin Solid Films 515, 2943–2948 (2007).  https://doi.org/10.1016/j.tsf.2006.08.033 ADSCrossRefGoogle Scholar
  18. 18.
    Madhav Kumar, V., Srinivas, A., Talapatra, A., Asthana, S., Mohanty, J., Kamat, S.: Effect of deposition temperature on structural microstructural and magnetic properties of CoFe2O4 thin films deposited by pulsed laser deposition (2016)Google Scholar
  19. 19.
    Shirsath, S.E., Liu, X., Yasukawa, Y., Li, S., Morisako, A.: Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film. Sci. Rep. 6.  https://doi.org/10.1038/srep30074(2016)
  20. 20.
    Ning, M., Li, J., Ong, C.K., Wang, S.J.: High perpendicular coercive field of (100)-oriented CoFe2O4 thin films on Si (100) with MgO buffer layer. J. Appl. Phys. 103, 13911 (2008).  https://doi.org/10.1063/1.2828040 ADSCrossRefGoogle Scholar
  21. 21.
    Lotgering, F.K.: Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I. J. Inorg. Nucl. Chem. 9, 113–123 (1959).  https://doi.org/10.1016/0022-1902(59)80070-1 CrossRefGoogle Scholar
  22. 22.
    Furushima, R., Tanaka, S., Kato, Z., Uematsu, K.: Orientation distribution–Lotgering factor relationship in a polycrystalline material—as an example of bismuth titanate prepared by a magnetic field. J. Ceram. Soc. Jpn. 118, 921–926 (2010).  https://doi.org/10.2109/jcersj2.118.921 CrossRefGoogle Scholar
  23. 23.
    Pham-Thi, M., Hemery, H., Dammak, H.: X ray investigation of high oriented (1 - x)PbMg1/3Nb2/3O3–(x)PbTiO3 ceramics. J. Eur. Ceram. Soc. 25, 2433–2435 (2005).  https://doi.org/10.1016/j.jeurceramsoc.2005.03.077 CrossRefGoogle Scholar
  24. 24.
    Harris, G.B.: X. Quantitative measurement of preferred orientation in rolled uranium bars, London, Edinburgh, Dublin Philos. Mag. J. Sci. 43, 113–123 (1952).  https://doi.org/10.1080/14786440108520972 CrossRefGoogle Scholar
  25. 25.
    Thompson, C.V., Carel, R.: Grain growth and texture evolution in thin films. Mater. Sci. Forum 204–206, 83–98 (1996)CrossRefGoogle Scholar
  26. 26.
    Sagar, E.S., Liu, X., Yusakawa, Y., Li, S., Morisako, A.: Sci. Rep. 1–9. https://doi.org/10.1038/srep30074 (2016)
  27. 27.
    Thompson, C.V., Carel, R.: J. Mech. Phys. Solids 44(5), 657–673 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    Terzzoli, M.C., Duhalde, S., Jacobo, S., Steren, L., Moina, C.: High perpendicular coercive field of CoFe2O4 thin films deposited by PLD. J. Alloys Compd. 209–212.  https://doi.org/10.1016/j.jallcom.2003.09.086 (2004)CrossRefGoogle Scholar
  29. 29.
    Mishra, R.K., Thomas, G.: Surface energy of spinel. J. Appl. Phys. 48, 4576–4580 (1977).  https://doi.org/10.1063/1.323486 ADSCrossRefGoogle Scholar
  30. 30.
    Schnittger, S., Jooss, C., Sievers, S.: Magnetic and structural properties of cobalt ferrite thin films and structures. J. Phys. Conf. Ser.  https://doi.org/10.1088/1742-6596/200/7/072086 (2010)Google Scholar
  31. 31.
    Delmdahl, R., Pätzel, R.: Pulsed laser deposition with excimer lasers. Phys. Stat. Sol (c) 5(10), 3276–3279 (2008).  https://doi.org/10.1002/pssc.200779515 CrossRefGoogle Scholar
  32. 32.
    Milutinović, A., Lazarević, Z., Jovalekić, .̌ C. , Kuryliszyn-Kudelska, I., Romčević, M., Kostić, S., Romčević, N.: The cation inversion and magnetization in nanopowder zinc ferrite obtained by soft mechanochemical processing. Mater. Res. Bull. 48, 4759–4768 (2013).  https://doi.org/10.1016/j.materresbull.2013.08.020 CrossRefGoogle Scholar
  33. 33.
    Shebanova, O.N., Lazor, P.: Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation. J. Raman Spectrosc. 34, 845–852 (2003).  https://doi.org/10.1002/jrs.1056 ADSCrossRefGoogle Scholar
  34. 34.
    Ahlawat, A., Sathe, V.G.: Raman study of NiFe2O4 nanoparticles, bulk and films: effect of laser power. J. Raman Spectrosc. 42, 1087–1094 (2011).  https://doi.org/10.1002/jrs.2791 ADSCrossRefGoogle Scholar
  35. 35.
    Chandramohan, P., Srinivasan, M.P., Velmurugan, S., Narasimhan, S.V., distribution, Cation: particle size effect on Raman spectrum of CoFe2O4. J. Solid State Chem. 184, 89–96 (2011).  https://doi.org/10.1016/j.jssc.2010.10.019 ADSCrossRefGoogle Scholar
  36. 36.
    Nakagomi, F., da Silva, S.W., Garg, V.K., Oliveira, A.C., Morais, P.C., Franco, A.: Influence of the Mg-content on the cation distribution in cubic MgxFe3-xO4 nanoparticles. J. Solid State Chem. 182, 2423–2429 (2009).  https://doi.org/10.1016/j.jssc.2009.06.036 ADSCrossRefGoogle Scholar
  37. 37.
    Skomski, R.: Nanomagnetics. J. Phys. Condens. Matter 15, R841 (2003).  https://doi.org/10.1088/0953-8984/15/20/202 ADSCrossRefGoogle Scholar
  38. 38.
    Rana, K., Thakur, P., Sharma, P., Tomar, M., Gupta, V., Thakur, A.: Improved structural and magnetic properties of cobalt nanoferrites: influence of sintering temperature. Ceram. Int. 41.  https://doi.org/10.1016/j.ceramint.2014.11.143 (2015)CrossRefGoogle Scholar
  39. 39.
    Gorter, E.W.: Magnetization in ferrites: saturation magnetization of ferrites with spinel structure. Nature 165, 798–800 (1950).  https://doi.org/10.1038/165798a0 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. López-Moreno
    • 1
    • 2
  • H. Montiel
    • 2
    Email author
  • A. Conde
    • 3
  • G. Alvarez
    • 4
  1. 1.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad UniversitariaCoyoacánMexico
  2. 2.Instituto de Ciencias Aplicadas y TecnologíaUniversidad Nacional Autónoma de México Circuito Exterior S/N, Ciudad Universitaria, A.P. 70-186CoyoacánMexico
  3. 3.Departamento de FísicaCINVESTAV-IPNMexico CityMexico
  4. 4.Universidad Autónoma de la Ciudad de MéxicoUACM-CuautepecLoma de la PalmaMexico

Personalised recommendations