Advertisement

Manufacture and Tests of a Bi2223/YBCO Coil for a 1-MJ/0.5-MVA Fault Current Limiter-Magnetic Energy Storage System

  • J. Y. ZhangEmail author
  • N. H. Song
  • Z. Y. Gao
  • F. Y. Zhang
  • L. W. Jing
  • W. Y. Guo
  • Y. P. Teng
  • R. L. Zhang
  • Z. Z. Xin
  • D. Zhang
  • W. W. Zhou
  • Z. Q. Zhu
  • X. Xu
  • L. Z. Lin
  • G. M. Zhang
  • L. Y. Xiao
Original Paper
  • 37 Downloads

Abstract

With the increasing of wind energy, it is necessary to develop an energy storage system to level the wave of wind power, and to develop a fault current limiter for improvement of the LVRT capability of the wind farm. An innovative idea to deal with the above problem is to develop a superconducting fault current limiter-magnetic energy storage system (SFCL-MES). In this paper, we report the progress of the superconducting coil for a 1-MJ/0.5-MVA FCL-SMES system. The coil consisted of 46 double pancakes, in which 8 pancakes were made of YBCO tapes and the others were made of Bi2223 tapes; the inductance of the coil was 13.3 H, and its rated current was 388 A while the maximum magnetic field was 3.5 T. This coil had been used for a FCL-SMES system, which was installed and tested at a wind farm connected to the live power grid.

Keywords

AL325 cryo-cooler Bi2223/Ag tape Double pancake FCL-SMES YBCO tape 

Notes

Funding Information

This project was supported in part by the National Natural Science Foundation of China under grant nos. 51577181, 51721005, and 51477168 and by the Frontier Science Key Research Project of Chinese Academy of Sciences (QYZDJ-SSW-JSC025).

References

  1. 1.
    Kraemer, H-P, Schmidt, W., Cai, H., Gamble, B., Madura, D., MacDonald, T., McNamara, J., Romanosky, W., Snitchler, G., Lallouet, N., Schmidt, F., Ahmed, S.: Superconducting fault current limiter for transmission voltage. Phys. Procedia 36, 921–926 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Yuan, W.: Second-Generation High-Temperature Superconducting Coils and their Applications for Energy Storage, 1st edn. Springer, New York (2011)CrossRefGoogle Scholar
  3. 3.
    Chen, L., Member, I.E.E.E., Chen, H., Yang, J., He, H., Yanjuan, Y., Li, G., Ying, X., Wang, Z., Li, R.: Conceptual design and evaluation of an HTS magnet for an SMES used in improving transient performance of a grid-connected PV system. IEEE Trans. Appl. Superconduct 28, 4600708 (2018)Google Scholar
  4. 4.
    Zhang, J., Dai, S., Wang, Z., Zhang, D., Song, N., Gao, Z., Zhang, F., Xi, X., Zhu, Z., Zhang, G., Lin, L., Xiao, L.: The electromagnetic analysis and structural design of a 1 MJ HTS magnet for SMES. IEEE Trans. Appl. Superconduct 21, 1344–1347 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Zhang, J., Dai, S., Zhang, D., Wang, Z., Zhang, F., Song, N., Xi, X., Zhang, Z., Zhu, Z., Gao, Z., Lin, L., Xiao, L.: Construction, testing and operation of a 1 MJ HTS magnet at a 10.5 kV superconducting power substation. IEEE Trans. Appl. Superconduct 22, 5700504 (2012)CrossRefGoogle Scholar
  6. 6.
    Elshiekh, M.E., Mansour, D.-E.A., Senior Member, IEEE, Zhang, M., Yuan, W., Wang, H., Xie, M.: New technique for using SMES to limit fault currents in wind farm power systems. IEEE Trans. Appl. Superconduct 28, 5602005 (2018)Google Scholar
  7. 7.
    Wang, Z., Senior Member, IEEE, Zhang, G., Qiu, M.: The feasibility study on the combined equipment between micro-SMES and inductive/electronic type fault current limiter. IEEE Trans. Appl. Superconduct. 13, 2116–2119 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Guo, W., Zhang, J., Song, N., Gao, Z.-Y., Ma, T., Zhu, Z., Xi, X., Li, L., Wang, Y., Dai, S., Xiao, L.: Overview and development progress of a 1-MVA/1-MJ superconducting fault current limiter-magnetic energy storage system. IEEE Trans. Appl. Superconduct. 26, 5200905 (2016)Google Scholar
  9. 9.
    Guo, W., Zhang, G., Zhang, J., Song, N., Gao, Z., Xu, X., Jing, L., Teng, Y., Zhu, Z., Xiao, L.: Development of a 1-MVA/1-MJ superconducting fault current limiter–magnetic energy storage system for LVRT capability enhancement and wind power smoothing. IEEE Trans. Appl. Superconduct. 28, 5700505 (2018)CrossRefGoogle Scholar
  10. 10.
    Brand, K.P.: Dielectric strength, boiling point and toxicity of gases—different aspects of the same basic molecular properties. IEEE Trans. Electric Insul EI-17, 451–456 (1982)CrossRefGoogle Scholar
  11. 11.
    Gerhold, J.: Properties of cryogenic insulants. Cryogenics 38, 1063–1081 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • J. Y. Zhang
    • 1
    • 2
    Email author
  • N. H. Song
    • 1
    • 2
  • Z. Y. Gao
    • 1
    • 2
  • F. Y. Zhang
    • 1
    • 2
  • L. W. Jing
    • 1
    • 2
  • W. Y. Guo
    • 1
    • 2
  • Y. P. Teng
    • 1
    • 2
  • R. L. Zhang
    • 3
  • Z. Z. Xin
    • 3
  • D. Zhang
    • 1
    • 2
  • W. W. Zhou
    • 1
    • 2
  • Z. Q. Zhu
    • 1
    • 2
  • X. Xu
    • 1
    • 2
  • L. Z. Lin
    • 1
    • 2
  • G. M. Zhang
    • 1
    • 2
  • L. Y. Xiao
    • 1
    • 2
  1. 1.Key Laboratory of Applied SuperconductivityChinese Academy of SciencesBeijingChina
  2. 2.Institute of Electrical EngineeringChinese Academy of SciencesBeijingChina
  3. 3.Xi’an XD Electric Research Institute Co., Ltd.XianChina

Personalised recommendations