Advertisement

Structural, Vibrational, and Magnetic Properties of MoS2/Cr2O3 Composites Synthesized by the Solid-State Technique

  • S. Bouazizi
  • J. Makni-ChakrounEmail author
  • F. Ayadi
  • W. Cheikhrouhou-Koubaa
  • M. Koubaa
  • V. Nachbaur
  • A. Cheikhrouhou
Original Paper
  • 74 Downloads

Abstract

(1− x) Cr2O3/x MoS2 (x = 0.25, 0.5, 0.75) were synthesized using the powder solid-state route. The structural, morphological, vibrational, and magnetic properties of the as-prepared MoS2/Cr2O3 samples with different Cr2O3 contents have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy, Raman spectroscopy, and vibrating sample magnetometry (VSM), respectively. The X-ray diffraction results show the presence of the parent compounds (molybdenum disulfide (MoS2) and chromium oxide (Cr2O3)) in addition to a secondary phase corresponding to chromium molybdenite Cr2Mo3O12. Raman and IR spectra were recorded, and the observed modes were analyzed and assigned to different normal modes of vibration. Magnetic characterizations revealed that all the series MoS2/Cr2O3 composites possess paramagnetic characteristics both at room temperature and at 30 K. Further, the maximum of magnetization increased with the increase of Cr2O3 content.

Keywords

MoS2 Cr2O3 Composite Solid state Magnetic properties Vibrational properties 

Notes

Acknowledgements

This work was supported by the Tunisian Ministry of Higher Education and Scientific Research

References

  1. 1.
    Dong, B., Liu, Y.R., Han, G.Q., Hu, W.H., Chai1, Y.M., Liu1, Y.Q., Liu, C.G: Facile synthesis of MoS2 modified TiO2 nanospheres with enhanced photoelectrocatalytic activity. Int. J. Electrochem. Sci. 11, 3039–3049 (2016)Google Scholar
  2. 2.
    Tongay, S., Varnoosfaderani, S.S., Appleton, B.R., Wu, J., Hebard, A.F.: Magnetic properties of MoS2: existence of ferromagnetism. J. Appl. Phys. Lett. 101, 123105 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Bhosale, R.: Visible-light-activated nanocomposite photocatalyst of Cr2O3/SnO2. J. Nanostructure. Chem. 3, 46 (2013)CrossRefGoogle Scholar
  4. 4.
    Hwang, M.J., Han, S.W., Nguyen, T.B., Hong, S.H., Ryu, K.S.: Preparation of MoO3/MoS2/TiO2 composites for catalytic degradation of methylene blue. J. Nanosci. Nanotechnol. 12, 5884–5891 (2012)CrossRefGoogle Scholar
  5. 5.
    Zhang, W., Xiao, X., Zheng, L., Wan, C.: Fabrication of TiO2/MoS2 composite photocatalyst and its photocatalytic mechanism for degradation of methyl orange under visible light. Can. J. Chem. Eng. 93, 1594–1602 (2015)CrossRefGoogle Scholar
  6. 6.
    Tedstone, A.A., Lewis, D.J., Hao, R., Mao, S.M., Bellon, P., Averback, R., Warrens, C., West, K., Howard, P., Gaemers, S., Dillon, S.J., O’Brien, P.: The mechanical properties of molybdenum disulfide and the effect of doping: an in situ TEM study. ACS Appl. Mater. Interfaces 7(37), 20829–20834 (2015)CrossRefGoogle Scholar
  7. 7.
    Hu, K. H., Hu, X. G., Xu, Y. F., Sun, J. D.: Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange. Int. J. Electrochem. Sci. 11, 3039–3049 (2016)Google Scholar
  8. 8.
    Tian, N., Li, Zh., Xu, D., Li, Y., Peng, W., Zhang, G., Zhang, F., Fan, X.: Utilization of MoS2 nanosheets to enhance the photocatalytic activity of ZnO for the aerobic oxidation of benzyl halides under visible light. J. Ind. Eng. Chem. Res. 55, 8726–8732 (2016)CrossRefGoogle Scholar
  9. 9.
    Yu, C., Jia, L., Shi, W., Li, L., Junmin, X.: Synthesis of SnO2/MoS2 composites with different component ratios and their applications as lithium ion battery anodes. RSC material (2014)Google Scholar
  10. 10.
    Gu, K., Peng, Z., Feng, J., Sun, F.: Preparation of ZnO-Cr2O3 composites by a sol-gel method and their photocatalytic activities. J. Appl. Mech. Mater. 151, 365–367 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Dutta, S., Pandey, A., Jain, L.K.K.: Growth and characterization of ultrathin TiO2-Cr2O3 nanocomposite films. J. Alloys. Compd. 696, 376–381 (2017)CrossRefGoogle Scholar
  12. 12.
    Abdullah, M., Rajab, F.M., Al-Abbas, M.S.: Structural and optical characterization of Cr2O3 nanostructures: evaluation of its dielectric properties. J. AIP Adv. 4, 027121 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Song, W.B., Wang, J.Q., Li, Z.Y., Liu, X.S., Yuan, B.H., Liang, E.J.: Phase transition and thermal expansion property of Cr2−x Zr0.5xMg0.5xMo3O12 solid solution. J. Chin. Phys. B 23(6), 066501–6–066501-7 (2014)Google Scholar
  14. 14.
    Gibot, P., Vidal, L.: Original synthesis of chromium (III) oxide nanoparticles. J. Eur. Ceram. Soc. 30, 911–915 (2010)CrossRefGoogle Scholar
  15. 15.
    Larbi, T., Ouni, B., Gantassi, A., Doll, K., Amlouk, M., Manoubi, T.: Structural, optical and vibrational properties of Cr2O3 with ferromagnetic and antiferromagnetic order: a combined experimental and density functional theory study. J. Magn. Magn. Mater. 04-8853(17), 31008–9 (2017)Google Scholar
  16. 16.
    Alejandro, M.S., Hummerb, K., Wirtza, L.: Vibrational and optical properties of MoS2: from monolayer to bulk. J. Surf. Sci. Rep. 70, 554–586 (2015)CrossRefGoogle Scholar
  17. 17.
    Park, J.W., So, H.S., Kim, S., Choi, S.H., Lee, H., Lee, J., Lee, C., Kim, Y.: Optical properties of large-area ultrathin MoS2 films: evolution from a single layer to multilayers. J. App. Phys. 116, 183509 (2014)CrossRefGoogle Scholar
  18. 18.
    Klissurski, D., Mancheva, M.: Synthesis of Cr2(MoO4)O3 from mechanically activated precursors. Chem. Sustain. Dev. 13, 229–232 (2005)Google Scholar
  19. 19.
    Shim, S.H., Duffy, T.S.: Raman spectroscopy and x-ray diffraction of phase transitions in Cr2O3 to 61 GPa. J. Phys. Rev. B 69, 144107 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Rajagopal, S., Bharaneswari, M., Nataraj, D., Khyzhun, O.Y., Djaoued, Y.: Crystal structure and electronic properties of facile synthesized Cr2O3 nanoparticles. J. Opt. Mater. Express 3, 095019 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Islam, I., Dwivedi, S., Dar, H.A., Dar, M.A., Varshney, D., Varshney, D.: Synthesis, structural and paramagnetic properties of SnO2 doped NiO nanoparticles. Int. Conf. Condens. Matter Appl. Phys. (ICC) 1728, 020289 (2016)Google Scholar
  22. 22.
    Battle, P.D., Cheetham, A.K., Harrison, W.T.A., Pollard, N.J.: The structure and magnetic properties of chromium(lll) molybdate. J. Solid State Chem. 58, 221–225 (1985)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Bouazizi
    • 1
  • J. Makni-Chakroun
    • 1
    Email author
  • F. Ayadi
    • 2
  • W. Cheikhrouhou-Koubaa
    • 1
  • M. Koubaa
    • 1
  • V. Nachbaur
    • 2
  • A. Cheikhrouhou
    • 1
  1. 1.LT2S LabDigital Research Center of SfaxSakiet-EzzitTunisia
  2. 2.Groupe de Physique des Matériaux (GPM) UMR 6634 CNRS UFR Sciences et TechniquesSaint Etienne du RouvrayFrance

Personalised recommendations