Fabrication of Graphene-Supported Palladium Nanoparticles-Decorated Zinc Oxide Nanorods for Potential Application

  • Prakhar Shukla
  • Jitendra Kumar ShuklaEmail author
Original Paper


We report the facile synthesis of graphene-supported palladium (Pd) nanoparticles anchored zinc oxide nanorods (Pd-ZnO/G) by the sol-gel method. X-ray diffraction (XRD) pattern confirmed the hexagonal wurtzite crystal structure (with P63mc phase) of Pd-ZnO/G nanorods similar to ZnO structure. X-ray diffraction results showed that graphene-supported Pd nanoparticles anchored on ZnO nanorods increases the average crystallite size of ZnO nanorods. Field emission scanning electron microscopy (FESEM) revealed the successful anchoring of Pd nanoparticles on the surface of ZnO/G nanorods. X-ray spectroscopy (XPS) was used to obtain the different oxidation state and surface compositional details of nanorods. Energy dispersive spectroscopy analysis confirmed the presence of palladium, carbon, and oxygen in Pd-ZnO/G structure. The optical absorption measurement indicates that after graphene and palladium doping, it shifted towards the low wavelength region for Pd-ZnO/G structure and high wavelength region in the case of ZnO/G nanostructure. Magnetic measurement showed that the saturation magnetization of Pd nanoparticles anchored nanorods increased when compared with that of ZnO/G and ZnO nanorods.


Nanorods Sol-Gel method Graphene oxides U-V spectra M-H curve 



P. Shukla is thankful to MHRD, India, for financial support and also grateful to V. Shukla IIT Kharagpur for helping in measurements.


  1. 1.
    Klingshirn, C.: The luminescence of zno under high one-and two-quantum excitation. Phys. Status Solidi B 71(2), 547–556 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    Kaneti, Y.V., Zakaria, Q.M., Zhang, Z., Chen, C., Yue, J., Liu, M., Jiang, X., Yu, A.: Solvothermal synthesis of zno-decorated \(\alpha \)-fe 2 o 3 nanorods with highly enhanced gas-sensing performance toward n-butanol. J. Mater. Chem. A 2(33), 13283–13292 (2014)CrossRefGoogle Scholar
  3. 3.
    Huang, L., Guo, G., Liu, Y., Chang, Q., Xie, Y.: Reduced graphene oxide-zno nanocomposites for flexible supercapacitors. J. Disp. Technol. 8(7), 373–376 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Pan, Z.W., Dai, Z.R., Wang, Z.L.: Nanobelts of semiconducting oxides. Science 291(5510), 1947–1949 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Kashif, M., Ali, M., Ali, S.M.U., Hashim, U.: Sol–gel synthesis of pd doped zno nanorods for room temperature hydrogen sensing applications. Ceram. Int. 39(6), 6461–6466 (2013)CrossRefGoogle Scholar
  6. 6.
    Wang, Y., Li, X., Wang, N., Quan, X., Chen, Y.: Controllable synthesis of zno nanoflowers and their morphology-dependent photocatalytic activities. Sep. Purif. Technol. 62(3), 727–732 (2008)CrossRefGoogle Scholar
  7. 7.
    Xue, X.-Y., Chen, Z.-H., Xing, L.-L., Ma, C.-H., Chen, Y.-J., Wang, T.-H.: Enhanced optical and sensing properties of one-step synthesized pt- zno nanoflowers. J. Phys. Chem. C 114(43), 18607–18611 (2010)CrossRefGoogle Scholar
  8. 8.
    Bhat, D.: Facile synthesis of zno nanorods by microwave irradiation of zinc–hydrazine hydrate complex. Nanoscale Res. Lett. 3(1), 31 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Guo, L., Ji, Y.L., Xu, H., Simon, P., Wu, Z.: Regularly shaped, single-crystalline zno nanorods with wurtzite structure. J. Am. Chem. Soc. 124(50), 14864–14865 (2002)CrossRefGoogle Scholar
  10. 10.
    Dong, X., Cao, Y., Wang, J., Chan-Park, M.B., Wang, L., Huang, W., Chen, P.: Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv. 2(10), 4364–4369 (2012)CrossRefGoogle Scholar
  11. 11.
    Yılmaz, S., Garry, S., McGlynn, E., Bacaksız, E.: Synthesis and characterization of mn-doped zno nanorods grown in an ordered periodic honeycomb pattern using nanosphere lithography. Ceram. Int. 40(6), 7753–7759 (2014)CrossRefGoogle Scholar
  12. 12.
    Ding, J., Zhu, J., Yao, P., Li, J., Bi, H., Wang, X.: Synthesis of zno–ag hybrids and their gas-sensing performance toward ethanol. Ind. Eng. Chem. Res. 54(36), 8947–8953 (2015)CrossRefGoogle Scholar
  13. 13.
    Shi, S., Yang, Y., Xu, J., Li, L., Zhang, X., Hu, G.-H., Dang, Z.-M.: Structural, optical and magnetic properties of co-doped zno nanorods prepared by hydrothermal method. J. Alloys Compd. 576, 59–65 (2013)CrossRefGoogle Scholar
  14. 14.
    Reddy, D.A., Ma, R., Kim, T.K.: Efficient photocatalytic degradation of methylene blue by heterostructured zno–rgo/ruo 2 nanocomposite under the simulated sunlight irradiation. Ceram. Int. 41(5), 6999–7009 (2015)CrossRefGoogle Scholar
  15. 15.
    Panigrahy, B., Sarma, D.: Enhanced photocatalytic efficiency of aupd nanoalloy decorated zno-reduced graphene oxide nanocomposites. RSC Adv. 5(12), 8918–8928 (2015)CrossRefGoogle Scholar
  16. 16.
    Venkatesan, A., Ramesha, C., Kannan, E.: In situ reduced graphene oxide interlayer for improving electrode performance in zno nanorods. J. Phys. D. Appl. Phys. 49(24), 245301 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Li, Z., Ye, L., Lei, F., Wang, Y., Xu, S., Lin, S.: Enhanced electro-photo synergistic catalysis of pt (pd)/zno/graphene composite for methanol oxidation under visible light irradiation. Electrochim. Acta 188, 450–460 (2016)CrossRefGoogle Scholar
  18. 18.
    Han, F., Yang, S., Jing, W., Jiang, K., Jiang, Z., Liu, H., Li, L.: Surface plasmon enhanced photoluminescence of zno nanorods by capping reduced graphene oxide sheets. Opt. Express 22(10), 11436–11445 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Hancock, J.M., Rankin, W.M., Hammad, T.M., Salem, J.S., Chesnel, K., Harrison, R.G.: Optical and magnetic properties of zno nanoparticles doped with co, ni and mn and synthesized at low temperature. J. Nanosci. Nanotechnol. 15(5), 3809–3815 (2015)CrossRefGoogle Scholar
  20. 20.
    Bhakat, C., Singh, P.P.: Zinc oxide nanorods: Synthesis and its applications in solar cell. Int. J. Mod. Eng. Res. 2, 2452À2454 (2012)Google Scholar
  21. 21.
    Hummers Jr, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)CrossRefGoogle Scholar
  22. 22.
    Nguyen, V.L., Nguyen, D.C., Hirata, H., Ohtaki, M., Hayakawa, T., Nogami, M.: Chemical synthesis and characterization of palladium nanoparticles. Adv. Nat. Sci.: Nanosci. Nanotechnol. 1(3), 035012 (2010)ADSGoogle Scholar
  23. 23.
    Roy, N., Leung, K. T., Pradhan, D.: Nitrogen doped reduced graphene oxide based pt–tio2 nanocomposites for enhanced hydrogen evolution. J. Phys. Chem. C 119(33), 19117–19125 (2015)CrossRefGoogle Scholar
  24. 24.
    Li, H., Zhang, L., Sun, Z., Liu, Y., Yang, B., Yan, S.: One-step synthesis of magnetic 1, 6-hexanediamine-functionalized reduced graphene oxide–zinc ferrite for fast adsorption of cr (vi). RSC Adv. 5(40), 31787–31797 (2015)CrossRefGoogle Scholar
  25. 25.
    Wang, T., Jin, B., Jiao, Z., Lu, G., Ye, J., Bi, Y.: Photo-directed growth of au nanowires on zno arrays for enhancing photoelectrochemical performances. J. Mater. Chem. A 2(37), 15553–15559 (2014)CrossRefGoogle Scholar
  26. 26.
    Akhavan, O., Mehrabian, M., Mirabbaszadeh, K., Azimirad, R.: Hydrothermal synthesis of zno nanorod arrays for photocatalytic inactivation of bacteria. J. Phys. D. Appl. Phys. 42(22), 225305 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Rodbari, R.J., Wendelbo, R., JAMSHIDI, L.C.L.A., Hernández, E. P., Nascimento, L.: Study of physical and chemical characterization of nanocomposite polystyrene/graphene oxide high acidity can be applied in thin films. J. Chil. Chem. Soc. 61(3), 3120–3124 (2016)CrossRefGoogle Scholar
  28. 28.
    Schneider, J.J., Hoffmann, R.C., Engstler, J., Soffke, O., Jaegermann, W., Issanin, A., Klyszcz, A.: A printed and flexible field-effect transistor device with nanoscale zinc oxide as active semiconductor material. Adv. Mater. 20(18), 3383–3387 (2008)CrossRefGoogle Scholar
  29. 29.
    Viswanatha, R., Sapra, S., Satpati, B., Satyam, P., Dev, B., Sarma, D.: Understanding the quantum size effects in zno nanocrystals. J. Mater. Chem. 14(4), 661–668 (2004)CrossRefGoogle Scholar
  30. 30.
    Tien, H.N., Khoa, N.T., Hahn, S.H., Chung, J.S., Shin, E.W., Hur, S.H., et al.: One-pot synthesis of a reduced graphene oxide–zinc oxide sphere composite and its use as a visible light photocatalyst. Chem. Eng. J. 229, 126–133 (2013)CrossRefGoogle Scholar
  31. 31.
    Ali, G.M., Moore, J.C., Kadhim, A.K., Thompson, C.: Electrical and optical effects of pd microplates embedded in zno thin film based msm uv photodetectors: a comparative study. Sens. Actuators, A 209, 16–23 (2014)CrossRefGoogle Scholar
  32. 32.
    Qin, S., Guo, X., Cao, Y., Ni, Z., Xu, Q.: Strong ferromagnetism of reduced graphene oxide. Carbon 78, 559–565 (2014)CrossRefGoogle Scholar
  33. 33.
    Sarkar, S., Raul, K., Pradhan, S., Basu, S., Nayak, A.: Magnetic properties of graphite oxide and reduced graphene oxide. Phys. E: Low-dimensional Syst. Nanostructures 64, 78–82 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Jeon, Y.T., Lee, G.H.: Magnetism of the fcc rh and pd nanoparticles. J. Appl. Phys. 103(9), 094313 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    Vu, T.H.T., Tran, T.T.T., Le, H.N.T., Nguyen, P.H.T., Bui, N.Q., Essayem, N.: A new green approach for the reduction of graphene oxide nanosheets using caffeine. Bull. Mater. Sci. 38(3), 1–5 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Sarla Dwivedi MahavidyalayaChhatrapati Shahu Ji Maharaj UniversityKanpurIndia

Personalised recommendations