Advertisement

Structural and Hysteretic Properties of La0.7Ca0.3−xSrxMnO3 Manganites Using the Hydrothermal Route

  • L. C. Rave-Osorio
  • V. Londoño-Calderón
  • J. Restrepo
  • O. Arnache
  • E. Restrepo-ParraEmail author
Original Paper
  • 93 Downloads

Abstract

Manganitesof La0.7Ca0.3−xSrxMnO3 have been produced using the hydrothermal method. The influence of the concentration of La, Ca, and Sr on the structural, morphological, and magnetic properties was studied and analyzed. The x-ray diffraction studies showed the occurrence of orthorombic and trigonal symmetries in the crystalline structure, depending on the stoichiometry. X-ray photoelectron spectroscopy studies were performed, showing the presence of the elements La3d, Ca2p, Sr3d, Mn2p, and O1s. In all samples, a deficiency of oxygen was observed and ascribed to hydroxide formation. The FTIR spectra shows the Mn–O–Mn bonds in the stretching vibration mode; on the other hand, a great relative amount of Mn4+ ions that are not included in the manganite phase was observed. Furthermore, morphology analyses developed using scanning electron microscopy showed cauliflower-type microstructures in all samples. The dependence of magnetization on magnetic field was also studied where a low coercivity and a high-saturation magnetization were evidenced. Values of the squareness ratio coefficient ranged between 0.0587 and 0.0867, indicating that the individual particles exhibit a strong random anisotropy.

Keywords

Manganite Magnetic properties XRD XPS FTIR SEM VSM Manganite powders Hysteresis loops 

Notes

Funding Information

This work was partially supported by Dirección Nacional de Investigaciones of the Universidad Nacional de Colombia under projects 34085. Support provided by the CODI-UdeA project 2016-10085 and the exclusive dedication UdeA program to one of the authors (JR) is also acknowledged.

References

  1. 1.
    Dhiman, I., Das, A., Nigam, A.K., Siwach, P.K., Singh, H.K., Srivastava, O.N., Li, G., Rao, G., Huang, Q., Geck, J., Wochner, P., Kiele, S., Gasser, U.: Low field magnetotransport in manganites orbital order induced ferromagnetic insulating properties. Influence of B-site disorder in La0.5Ca 0.5Mn1-xBxO3 (B = Fe, Ru, Al and Ga) manganites. J. Phys. Condens. Matter. 23, 246006–2460015 (2011).  https://doi.org/10.1088/0953-8984/23/24/246006 ADSCrossRefGoogle Scholar
  2. 2.
    Zhang, G., Li, G., Liao, F., Fu, Y., Xiong, M., Lin, J.: Crystal growth and magnetic properties of the double perovskites R2MnNiO6 (R = Pr, Sm and Ho) by a hydrothermal route. J. Cryst. Growth. 327, 262–266 (2011).  https://doi.org/10.1016/j.jcrysgro.2011.06.002 ADSCrossRefGoogle Scholar
  3. 3.
    Phan, T.L., Ho, T.A., Manh, T.V., Dang, N.T., Jung, C.U., Lee, B.W., Thanh, T.D.: Y-doped La0.7Ca0.3MnO3 manganites exhibiting a large magnetocaloric effect and the crossover of first-order and second-order phase transitions. J. Appl. Phys. 118, 0–9 (2015).  https://doi.org/10.1063/1.4933179 CrossRefGoogle Scholar
  4. 4.
    Zhang, T., Wang, X.P., Fang, Q.F., Li, X.G.: Magnetic and charge ordering in nanosized manganites. Appl. Phys. Rev. 1, 31302 (2014).  https://doi.org/10.1063/1.4895117 CrossRefGoogle Scholar
  5. 5.
    Schiffer, P., Ramirez, A.P., Bao, W., Cheong, S.-W.: Low temperature magnetoresistance and the magnetic phase diagram of La 12 x Ca x MnO 3. Phys. Rev. 3336–3339. http://www.tandar.cnea.gov.ar/sacanell/CMR/PRL03336.pdf (accessed April 28, 2017) (1995)
  6. 6.
    Shankar, K.S., Kar, S., Subbanna, N., Raychaudhuri, A.K., Sood, A.K.: Enhanced ferromagnetic transition temperature in nanocrystalline lanthanum calcium manganese oxide (La 0.67 Ca 0.33 MnO 3 ), (n.d.).  https://doi.org/10.1016/j.ssc.2003.10.029 ADSCrossRefGoogle Scholar
  7. 7.
    de Andrés, A., García-Hernández, M., Martínez, J.L.: Conduction channels and magnetoresistance in polycrystalline manganites. Phys. Rev. B. 60, 7328–7334 (1999). 10.1103/PhysRevB.60.7328ADSCrossRefGoogle Scholar
  8. 8.
    Roy, S., Guo, Y.Q., Venkatesh, S., Ali, N.: Interplay of structure and transport properties of sodium-doped lanthanum manganite. J. Phys. Condens. Matter. 13, 9547–9559 (2001).  https://doi.org/10.1088/0953-8984/13/42/314 ADSCrossRefGoogle Scholar
  9. 9.
    Zhu, D., Zhu, H., Zhang, Y.: Hydrothermal synthesis of La0.5Ba0.5MnO3 nanowires. Appl. Phys. Lett. 80, 1634–1636 (2002).  https://doi.org/10.1063/1.1455690 ADSCrossRefGoogle Scholar
  10. 10.
    Mira, J., Rivas, J., Hueso, L.E., Rivadulla, F., López Quintela, M. A.: Drop of magnetocaloric effect related to the change from first- to second-order magnetic phase transition in La 2/3(Ca 1-xSr x) 1/3MnO 3. J. Appl. Phys. 91, 8903–8905 (2002).  https://doi.org/10.1063/1.1451892 ADSCrossRefGoogle Scholar
  11. 11.
    Cao, D., Zhang, Y., Dong, W., Yang, J., Bai, W., Chen, Y., Wang, G., Dong, X., Tang, X.: Structure, magnetic transport properties of La0.7Ca0.3-xSrxMnO3 thin films by sol–gel method. Ceram Int. 41, S381–S386 (2015).  https://doi.org/10.1016/j.ceramint.2015.03.291 CrossRefGoogle Scholar
  12. 12.
    Du, Y.W., Wang, Z.M., Ni, G., Xu, Q.Y., Sang, H.: Magnetic entropy change in perovskite manganites La0.65Nd0.05Ca0.3Mn0.9B0.1O3 (B = Mn, Cr, Fe). J. Magn. Magn. Mater. 234, 371–374 (2001).  https://doi.org/10.1016/S0304-8853(01)00424-3 ADSCrossRefGoogle Scholar
  13. 13.
    Shankar, K.S., Kar, S., Raychaudhuri, A.K., Subbanna, G.N.: Fabrication of ordered array of nanowires of La0.67Ca0.33MnO3 (x = 0.33) in alumina templates with enhanced ferromagnetic transition temperature. Appl. Phys. Lett. 84, 993–995 (2004).  https://doi.org/10.1063/1.1646761 ADSCrossRefGoogle Scholar
  14. 14.
    Sun, W.A., Li, J.Q., Ao, W.Q., Tang, J.N., Gong, X.Z.: Hydrothermal synthesis and magnetocaloric effect of La0.7Ca0. 2Sr0.1MnO3. Powder Technol. 166, 77–80 (2006).  https://doi.org/10.1016/j.powtec.2006.05.015 CrossRefGoogle Scholar
  15. 15.
    Byrappa, K., Yoshimura, M., Byrappa, K., Yoshimura, M.: 1 – Hydrothermal technology—principles and applications. Handb. Hydrothermal Technol. 1–52 (2001).  https://doi.org/10.1016/B978-081551445-9.50002-7 Google Scholar
  16. 16.
    Peng, J., Hojamberdiev, M., Xu, Y., Cao, B., Wang, J., Wu, H.: Hydrothermal synthesis magnetic properties of gadolinium-doped CoFe2O4 nanoparticles. J. Magn. Magn Mater. 323, 133–137 (2011). 10.1016/j.jmmm.2010.08.048ADSCrossRefGoogle Scholar
  17. 17.
    Byrappa, K., Adschiri, T.: Hydrothermal technology for nanotechnology. Prog. Cryst. Growth Charact. Mater. 53, 117–166 (2007).  https://doi.org/10.1016/j.pcrysgrow.2007.04.001 CrossRefGoogle Scholar
  18. 18.
    Shankar, K.S., Kar, S., Subbanna, G.N., Raychaudhuri, A.K.: Enhanced ferromagnetic transition temperature in nanocrystalline lanthanum calcium manganese oxide (La0.67Ca0.33MnO3). Solid State Commun. 129, 479–483 (2004).  https://doi.org/10.1016/j.ssc.2003.10.029 ADSCrossRefGoogle Scholar
  19. 19.
    Xia, W., Li, L., Wu, H., Xue, P., Zhu, X.: Structural, morphological, and magnetic properties of sol-gel derived La0.7Ca0.3MnO3 manganite nanoparticles. Ceram Int. 43, 3274–3283 (2017).  https://doi.org/10.1016/j.ceramint.2016.11.160 CrossRefGoogle Scholar
  20. 20.
    Sakthipandi, K., Rajendran, V.: Metal insulator transition of bulk and nanocrystalline la1-XCaxmno3 perovskite manganite materials through in-situ ultrasonic measurements. Mater. Charact. 77, 70–80 (2013).  https://doi.org/10.1016/j.matchar.2012.12.013 CrossRefGoogle Scholar
  21. 21.
    Rabenau, A.: The role of hydrothermal synthesis in preparative chemistry. Angew. Chemie Int. Ed. English. 24, 1026–1040 (1985).  https://doi.org/10.1002/anie.198510261 CrossRefGoogle Scholar
  22. 22.
    Larson, U., Von Dreele, A.C.: (Los Alamos National Laboratory, New Mexico, Report LAUR, in: 2000: pp. 86–748Google Scholar
  23. 23.
    Shackelford, J.F.: Introducción a la ciencia de materiales para ingenieros, 6 edición Madrid (2005)Google Scholar
  24. 24.
    S.G.-S.A. and C. Technology, CASA XPS, User’s manual, in: CASA XPS, User’s Man., Berlin, 2001: pp. 65–70.  https://doi.org/10.1007/BF03072580 CrossRefGoogle Scholar
  25. 25.
    Samal, A.K., Pradeep, T.: Lanthanum telluride nanowires: formation, doping, and Raman studies. J. Phys. Chem. C. 114, 5871–5878 (2010).  https://doi.org/10.1021/jp911658k CrossRefGoogle Scholar
  26. 26.
    Vasquez, R.P.: Alkaline earth core level photoemission spectroscopy of high temperature superconductors. J. Electron Spectros. Relat. Phenomena. 66, 241–255 (1994).  https://doi.org/10.1016/0368-2048(93)01856-A CrossRefGoogle Scholar
  27. 27.
    Berthou, H., Jørgensen, C.K., Bonnelle, C.: Influence of the ligands on 3d photoelectron spectra of the first four lanthanides. Chem. Phys. Lett. 38, 199–206 (1976).  https://doi.org/10.1016/0009-2614(76)85135-4 ADSCrossRefGoogle Scholar
  28. 28.
    Liang, Y. -C., Zhong, H.: Materials synthesis and annealing-induced changes of microstructure and physical properties of one-dimensional perovskite–wurtzite oxide heterostructures. Appl. Surf. Sci. 283, 490–497 (2013).  https://doi.org/10.1016/j.apsusc.2013.06.134 ADSCrossRefGoogle Scholar
  29. 29.
    Wagner, J.F.M.C.D., Riggs, W.M., Davis, L.E.: Handbook of x-ray spectroscopy Perkin-Elmer Corporation Physical Electronics Division (1979)Google Scholar
  30. 30.
    Han, S.W., Lee, J.D., Kim, K.H.: Electronic Structures of the CMR Perovskites R1-xAxMnO3 (R = La, Pr; A = Ca, Sr, Ce) using photoelectron spectroscopy. J. Korean Phys. Soc. 40, 501–510 (2002)Google Scholar
  31. 31.
    Dudric, R., Vladescu, A., Rednic, V., Neumann, M., Deac, I.G., Tetean, R.: XPS Study on La0.67Ca0.33Mn1-xCoxO3 compounds. J. Mol. Struct. 1073, 66–70 (2014).  https://doi.org/10.1016/j.molstruc.2014.04.065 ADSCrossRefGoogle Scholar
  32. 32.
    Jadhav, S.V., Nikam, D.S., Khot, V.M., Mali, S.S., Hong, C.K., Pawar, S.H.: PVA And PEG functionalised LSMO nanoparticles for magnetic fluid hyperthermia application. Mater. Charact. 102, 209–220 (2015).  https://doi.org/10.1016/j.matchar.2015.03.001 CrossRefGoogle Scholar
  33. 33.
    Giri, A., Goswami, N., Bootharaju, M.S., Xavier, P.L., John, R., Thanh, N.T.K., Pradeep, T., Ghosh, B., Raychaudhuri, A.K., Pal, S.K.: Nanoparticles (2012)Google Scholar
  34. 34.
    Ju, H.L., Sohn, H.: Magnetic inhomogeneity and colossal magnetoresistance in manganese oxides. J. Magn. Magn Mater. 167, 200–208 (1997).  https://doi.org/10.1016/S0304-8853(96)00647-6 ADSCrossRefGoogle Scholar
  35. 35.
    Xie, H., Huang, H., Cao, N., Zhou, C., Niu, D., Gao, Y.: Effects of annealing on structure and composition of LSMO thin films. Phys. B Condens. Matter. 477, 14–19 (2015).  https://doi.org/10.1016/j.physb.2015.07.032 ADSCrossRefGoogle Scholar
  36. 36.
    Arandiyan, H., Dai, H., Deng, J., Liu, Y., Bai, B., Wang, Y., Li, X., Xie, S., Li, J.: Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: active catalysts for the combustion of methane. J. Catal. 307, 327–339 (2013).  https://doi.org/10.1016/j.jcat.2013.07.013 CrossRefGoogle Scholar
  37. 37.
    Deng, J., Zhang, L., Dai, H., He, H., Au, C.T.: Hydrothermally fabricated single-crystalline strontium-substituted lanthanum manganite microcubes for the catalytic combustion of toluene. J. Mol. Catal. A Chem. 299, 60–67 (2009).  https://doi.org/10.1016/j.molcata.2008.10.006 CrossRefGoogle Scholar
  38. 38.
    Zou, G., You, X., He, P.: Patterning of nanocrystalline La0.7Sr0.3MnO3 thin films prepared by sol–gel process combined with soft lithography, Mater. Lett. 62, 1785–1788 (2008).  https://doi.org/10.1016/j.matlet.2007.10.003 CrossRefGoogle Scholar
  39. 39.
    Rendón-Angeles, J.C., Matamoros-Veloza, Z., Yanagisawa, K.: Preparation of selected ceramic compounds by controlled crystallization under hydrothermal conditions, (n.d.). http://cdn.intechopen.com/pdfs/39136.pdf (accessed September 28, 2017)
  40. 40.
    Machocki, A., Ioannides, T., Stasinska, B., Gac, W., Avgouropoulos, G., Delimaris, D., Grzegorczyk, W., Pasieczna, S.: Manganese-lanthanum oxides modified with silver for the catalytic combustion of methane. J. Catal. 227, 282–296 (2004).  https://doi.org/10.1016/j.jcat.2004.07.022 CrossRefGoogle Scholar
  41. 41.
    Abdel-Latif, I.A., Ismail, A.A., Bouzid, H., Al-Hajry, A.: Synthesis of novel perovskite crystal structure phase of strontium doped rare earth manganites using sol gel method. J. Magn. Magn. Mater. 393, 233–238 (2015).  https://doi.org/10.1016/j.jmmm.2015.05.078 ADSCrossRefGoogle Scholar
  42. 42.
    Devia, D., Ospina, R., Benavides, V., Restrepo, E., Devia, A. A.~: Study of TiN/BN bilayers produced by pulsed arc plasma 78, 67–71 (2005).  https://doi.org/10.1016/j.vacuum.2004.12.016 CrossRefGoogle Scholar
  43. 43.
    Chen, S., Zhang, Y., Han, W., Wellburn, D., Liang, J., Liu, C.: Synthesis and magnetic properties of Fe2O3–TiO2 nano-composite particles using pulsed laser gas phase evaporation–liquid phase collecting method. Appl. Surf. Sci. 283, 422–429 (2013).  https://doi.org/10.1016/j.apsusc.2013.06.125 ADSCrossRefGoogle Scholar
  44. 44.
    Gaudon, A.R.M., Laberty-Robert, C., Ansart, F., Stevens, P.: Preparation and characterization of La1 −xSrxMnO3 + (0x ≤ 0.6) powder by sol–gel processing. Solid State Sci. 4(n.d.) 125– 133Google Scholar
  45. 45.
    Zhang, X., Hou, F., Yang, Y., Wang, Y., Liu, N., Chen, D., Yang, Y.: A facile synthesis for cauliflower like CeO 2 catalysts from ce-BTC precursor and their catalytic performance for CO oxidation. Appl. Surf. Sci. 423, 771–779 (2017).  https://doi.org/10.1016/j.apsusc.2017.06.235 ADSCrossRefGoogle Scholar
  46. 46.
    Chen, T., Wu, Z., Xiang, W., Wang, E., Chen, T., Guo, X., Chen, Y., Zhong, B.: Cauliflower-like MnO@C/N composites with multiscale, expanded hierarchical ordered structures as electrode materials for lithium- and sodium-ion batteries. Electrochim. Acta. 246, 931–940 (2017).  https://doi.org/10.1016/j.electacta.2017.06.041 CrossRefGoogle Scholar
  47. 47.
    Shi, H., Zhao, Y., Li, N., Wang, K., Hua, X., Chen, M., Teng, F.: Synthesis and photocatalytic activity of novel CuO cauliflowers grown from cu(OH)2. Catal. Commun. 47, 7–12 (2014).  https://doi.org/10.1016/j.catcom.2013.12.032 CrossRefGoogle Scholar
  48. 48.
    Dutta, P., Dey, P., Nath, T.K.: Effect of nanometric grain size on room temperature magnetoimpedance, magnetoresistance, and magnetic properties of La0.7Sr0.3MnO3 nanoparticles. J. Appl. Phys. 102, 73906 (2007).  https://doi.org/10.1063/1.2786706 CrossRefGoogle Scholar
  49. 49.
    Wang, G.F., Zhao, Z.R., Li, L.R., Zhang, X.F.: Effect of non-stoichiometry on the structural, magnetic and magnetocaloric properties of La0.67Ca0.33Mn1 + O3 manganites. J. Magn. Magn. Mater. 397, 198–204 (2016).  https://doi.org/10.1016/j.jmmm.2015.08.096 ADSCrossRefGoogle Scholar
  50. 50.
    Mamiya, H., Ohnuma, M., Nakatani, I., Furubayashim, T.: Extraction of blocking temperature distribution from zero-field-cooled and field-cooled magnetization curves. IEEE Trans. Magn. 41, 3394–3396 (2005).  https://doi.org/10.1109/TMAG.2005.855205 ADSCrossRefGoogle Scholar
  51. 51.
    Tadic, M., Savic, S.M., Jaglicic, Z., Vojisavljevic, K., Radojkovic, A., Prsic, S., Nikolic, D.: Magnetic properties of NiMn2O4 −δ (nickel manganite): multiple magnetic phase transitions and exchange bias effect. J. Alloys Compd. 588, 465–469 (2014).  https://doi.org/10.1016/j.jallcom.2013.11.025 CrossRefGoogle Scholar
  52. 52.
    Ehsani, M.H., Kameli, P., Ghazi, M.E., Razavi, F.S., Taheri, M.: Tunable magnetic and magnetocaloric properties of La0. 6Sr0.4MnO3 nanoparticles. J. Appl. Phys. 114, 223907 (2013).  https://doi.org/10.1063/1.4846758 ADSCrossRefGoogle Scholar
  53. 53.
    Bhowmik, R.N., Nagarajan, R., Ranganathan, R.: Magnetic enhancement in antiferromagnetic nanoparticle of CoRh2O4. Phys. Rev. B. 69, 54430 (2004).  https://doi.org/10.1103/PhysRevB.69.054430 ADSCrossRefGoogle Scholar
  54. 54.
    Dong, S., Yu, R., Yunoki, S., Liu, J.M., Dagotto, E.: Ferromagnetic tendency at the surface of CE-type charge-ordered manganites. Phys. Rev. B Condens. Matter Mater. Phys. 78, 1–7 (2008).  https://doi.org/10.1103/PhysRevB.78.064414 CrossRefGoogle Scholar
  55. 55.
    Nowosielecka, U., Pelka, R., Moszyńska, I., Guskos, N., Typek, J., żonierkiewicz, G.: Studies of magnetic properties of nanocrystalline iron of different sizes of nanocrystallites. J. Magn. Magn. Mater. 443, 324–333 (2017).  https://doi.org/10.1016/j.jmmm.2017.07.095 ADSCrossRefGoogle Scholar
  56. 56.
    Garcia-Otero, J., Porto, M., Rivas, J., Bunde, A.: Monte Carlo simulation of hysteresis loops of single-domain particles with cubic anisotropy and their temperature dependence. J. Magn. Magn. Mater. 203, 268–270 (1999).  https://doi.org/10.1016/S0304-8853(99)00268-1 ADSCrossRefGoogle Scholar
  57. 57.
    Fenineche, N.E., Hamzaoui, R., El Kedim, O.: Structure and magnetic properties of nanocrystalline Co-Ni and Co-Fe mechanically alloyed. Mater. Lett. 57, 4165–4169 (2003).  https://doi.org/10.1016/S0167-577X(03)00283-0 CrossRefGoogle Scholar
  58. 58.
    Londono-Calderon, V., Rave-Osorio, L.C., Restrepo, J., Jativa, J., Jurado, J.F., Arnache, O., Restrepo-Parra, E.: Structural and magnetic properties of La1-x(Ca,Sr)xMnO3 powders produced by the hydrothermal method. J. Supercond. Nov. Magn.  https://doi.org/10.1007/s10948-018-4625-8 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. C. Rave-Osorio
    • 1
  • V. Londoño-Calderón
    • 1
  • J. Restrepo
    • 2
  • O. Arnache
    • 2
  • E. Restrepo-Parra
    • 1
    Email author
  1. 1.Laboratorio de Física del PlasmaUniversidad Nacional de Colombia – ManizalesManizalesColombia
  2. 2.Grupo de Magnetismo y SimulaciónInstituto de Física, Universidad de AntioquiaMedellínColombia

Personalised recommendations