Review on Magnetocaloric Effect and Materials

  • N. Raghu Ram
  • M. Prakash
  • U. Naresh
  • N. Suresh Kumar
  • T. Sofi Sarmash
  • T. Subbarao
  • R. Jeevan Kumar
  • G. Ranjith Kumar
  • K. Chandra Babu Naidu
Review Paper
  • 79 Downloads

Abstract

A detailed discussion of magnetocaloric properties of distinct materials is a vital aspect in magnetic refrigeration technology. This review paper deals with all kinds of magnetocaloric materials such as ferromagnetic perovskites, glass ceramics, oxide-based composites and spinel ferrites. The comparative study of magnetocaloric properties revealed that manganites have the potential applications in magnetorefrigeration technology.

Keywords

Ferromagnetic perovskites Magnetocaloric effect Entropy 

References

  1. 1.
    Cik, J.: Experimental study of the magnetocaloric effect in the pseudo binary Laves-phase compounds. J. Supercond. Nov. Magn. 27, 2547–2553 (2014).  https://doi.org/10.1007/s10948-014-2601-5 CrossRefGoogle Scholar
  2. 2.
    Weiss, P., Piccard, A.: Sur un nouveau phenomene magnetocalorique. Comptes Rendus 166, 352–354 (1918)Google Scholar
  3. 3.
    Korolev, V. V., Romanov, A. S., Arefev, I. M.: Magnetocaloric effect and heat capacity of ferrimagnetic nanosystems: magnetite-based magnetic liquids and suspensions. Russian J. Phys. Chemi. 80, 464–466 (2006)CrossRefGoogle Scholar
  4. 4.
    Phan, M.-H., Yu, S.-C.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325–340 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Barman, R., Kaur, D.: Improved magnetocaloric effect in magnetron sputtered Ni-Mn-Sb-Al ferromagnetic shape memory alloy thin films. Vacuum 120, 22–26 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Mo, Z.-J., Shen, J., Li, L., Liu, Y., Tang, C.-C., Hu, F.-X., Sun, J.-R., Shen, B.-G.: Observation of giant magnetocaloric effect in EuTiO3. Mater. Lett. 158, 282–284 (2015)CrossRefGoogle Scholar
  7. 7.
    Dong, Q. Y., Ma, Y., Ke, Y. J., Zhang, X. Q., Wang, L. C., Shen, B. G., Sun, J. R., Cheng, Z. H.: Ericsson-like giant magnetocaloric effect in GdCrO4–ErCrO4 composite oxides near liquid hydrogen temperature. Mater. Lett. 161, 669–673 (2015)CrossRefGoogle Scholar
  8. 8.
    Anwar, M. S., Khan, A. A., Park, K. Y., Lee, S. R., Ahmed, F., Koo, B. H.: Influence of Zn on magnetocaloric effect in (0.95)La0.7Sr0.3MnO3/Ni1−xZnxFe2O4 ceramic composites. Mater. Res. Bull. 69, 41–45 (2015)CrossRefGoogle Scholar
  9. 9.
    Wang, G. F., Zhao, Z. R., Li, H. L., Zhang, X. F.: Enhancement of refrigeration capacity and table-like magnetocaloric effect in La0.8Ca0.2MnO3/La0.8K0.2MnO3 nanocrystalline composite. Cer. Int. 41, 9035–9040 (2015)CrossRefGoogle Scholar
  10. 10.
    Li, J., Law, J. Y., Ma, H., He, A., Man, Q., Men, H., Huo, J., Chang, C., Wang, X., Li, R. -W.: Magnetocaloric effect in Fe–Tm–B–Nb metallic glasses near room temperature. J. Non-Cryst. Solids 425, 114–117 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Tawfik, A., Hemeda, O. M., Hemeda, D. M., Mostafa, M.: Structural and magnetocaloric properties of nano Zn ferrite doped with Ni under hydrothermal conditions. Eur. Phys. J. Plus 129, 1–13 (2014)CrossRefGoogle Scholar
  12. 12.
    Chau, N., Thuan, N. K., Minh, D. L., Luong, N. H.: Effects of Zn content on the magnetic and magnetocaloric properties of Ni-Zn ferrites. VNU J. Sci. Math. – Phys. 24, 155–162 (2008)Google Scholar
  13. 13.
    Hemeda, O. M., Mostafa, N. Y., Abd Elkader, O. H., Hemeda, D. M., Tawfik, A., Mostafa, M.: Electrical and morphological properties of magnetocaloric nano ZnNi ferrite. J. Magn. Magn. Mater. 394, 96–104 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Poddar, P., Gass, J., Rebar, D. J., Srinath, S., Srikanth, H., Morrisonb, S. A., Carpenter, E. E.: Magnetocaloric effect in ferrite nanoparticles. J. Magn. Magn. Mater. 307, 227–231 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Oumezzine, E., Hcini, S., Baazaoui, M., Hlil, E. K., Oumezzine, M.: Structural, magnetic and magnetocaloric properties of Zn0.6−xNixCu0.4Fe2O4 ferrite nanoparticles prepared by Pechini sol-gel method. Pow. Technol. 278, 189–195 (2015)CrossRefGoogle Scholar
  16. 16.
    de Oliveira, N. A., von Ranke, P. J.: Theoretical aspects of the magnetocaloric effect. Phys. Rep. 489, 89–159 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Peña, M. A., Fierro, J. L.: Chemical structures and performance of perovskite oxides. Chem. Rev. 101 (7), 1981–2017 (2001)CrossRefGoogle Scholar
  18. 18.
    Bhumireddi, S., Bhatnagar, A. K., Singh, D., Rayaprol, S., Das, D., Ganesan, V.: Specific heat and magnetocaloric studies of hexagonal Yb1−xErxMnO3. Mater. Lett. 161, 419–422 (2015)CrossRefGoogle Scholar
  19. 19.
    Zhang, X., Qian, M., Su, R., Geng, L.: Giant room temperature inverse and conventional magnetocaloric effects in Ni–Mn–In alloys. Mater. Lett. 163, 274–276 (2016)CrossRefGoogle Scholar
  20. 20.
    Boutahar, A., Lassri, H., Hlil, E. K.: Magnetic, magnetocaloric properties and phenomenological model in amorphous Fe60Ru20B20 alloy. Solid State Commun. 221, 9–13 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Phejar, M., Paul-Boncour, V., Bessais, L.: Investigation on structural and magnetocaloric properties of LaFe13−xSix(H,C)y compounds. J. Solid State Chem. 233, 95–102 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Shao, Q., Lv, Q., Yang, X., Han, Z., Dong, S., Qian, B., Zhang, L., Zhang, C., Fan, Y., Jiang, X.: Low-field magnetocaloric effect in anti-perovskite Mn3Ga1−xGexC compounds. J. Magn. Magn. Mater. 396, 160–165 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Tlili, R., Omri, A., Bekri, M., Bejar, M., Dhahri, E., Hlil, E. K.: Effect of Ga-substitution on magnetocaloric effect in La0.7(ba,Sr)0.3Mn1−xGaxO3(0.0x0.20) polycrystalline at room temperature. J. Magn. Magn. Mater. 399, 143–148 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    França, E. L. T., dos Santos, A. O., Coelho, A. A., da Silva, L. M.: Magnetocaloric effect of the ternary Dy, Ho and Er platinum gallides. J. Magn. Magn. Mater. 401, 1088–1092 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Mleiki, A., Othmani, S., Cheikhrouhou-Koubaa, W., Koubaa, M., Cheikhrouhou, A., Hlil, E. K.: Effect of praseodymium doping on the structural, magnetic and magnetocaloric properties of Sm0.55Sr0.45MnO3 manganite. Solid State Commun. 223, 6–11 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Zhang, Y., Wild, G.: Magnetic properties and magnetocaloric effect in quaternary boroncarbides compound ErNiBC. Physica B 472, 56–59 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Balli, M., Roberge, B., Vermette, J., Jandl, S., Fournier, P., Gospodinov, M. M.: Magnetocaloric properties of the hexagonal HoMnO3 single crystal revisited. Physica B 478, 77–83 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Yüzüak, E., Dincer, I., Elerman, Y., Dumkow, I., Heger, B., Yuce Emre, S.: Enhancement of magnetocaloric effect in CoMn0:9Fe0:1Ge alloy. J. Alloys Compd. 641, 69–73 (2015)CrossRefGoogle Scholar
  29. 29.
    Gómez, J. R., Garcia, R. F., De Miguel Catoira, A., Gómez, M. R.: Magnetocaloric effect: a review of the thermodynamic cycles in magnetic refrigeration. Renew. Sustain. Energy Rev. 17, 74–82 (2013)CrossRefGoogle Scholar
  30. 30.
    Wang, G. F., Zhao, Z. R., Li, H. L., Zhang, X. F.: Enhancement of refrigeration capacity and table-like magnetocaloric effect in La0.8Ca0.2MnO3/La0.8K0.2MnO3 nanocrystalline composite. Cer. Int. 41, 9035–9040 (2015)CrossRefGoogle Scholar
  31. 31.
    Tlili, R., Omri, A., Bejar, M., Dhahri, E., Hlil, E. K.: Theoretical investigation of the magnetocaloric effect of La0.7(ba,Sr)0.3MnO3 compound at room temperature with a second-order magnetic phase transition. Cer. Int. 41, 10654–10658 (2015)CrossRefGoogle Scholar
  32. 32.
    Mahjoub, S., Baazaoui, M., Hlil, E. K., Oumezzine, M.: Effect of synthesis techniques on structural, magnetocaloric and critical behavior of Pr0.6Ca0.1Sr0.3Mn0.975Fe0.025O3 manganites. Cer. Int. 41, 12407–12416 (2015)CrossRefGoogle Scholar
  33. 33.
    Gharsallah, H., Bejar, M., Dhahri, E., Hlil, E. K., Bessais, L.: Prediction of magnetocaloric effect in La,0.6Ca0.4−xSrxMnO3 compounds for x = 0, 0.05 and 0.4 with phenomenological model. Cer. Int. 42, 697–704 (2016)CrossRefGoogle Scholar
  34. 34.
    Zhang, X., Fann, J., Xu, L., Hu, D., Zhang, W., Zhu, Y.: Magnetic and magnetocaloric properties of nanocrystalline La0.5Sr0.5MnO3. Cer. Int. 42, 1476–1481 (2016)CrossRefGoogle Scholar
  35. 35.
    Dembele, S. N., Ma, Z., Shang, Y. F., Fu, H., Balfour, E. A., Hadimani, R. L., Jiles, D. C., Teng, B. H., Luo, Y.: Large magnetocaloric effect of GdNiAl2 compound. J. Magn. Magn. Mater. 391, 191–194 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Boutahar, A., Lassri, H., Hlil, E. K., Fruchart, D.: Critical behavior and its correlation with magnetocaloric effect in amorphous Fe80−xVxB12Si8(x = 8, 10and13.7) alloys. J. Magn. Magn. Mater. 398, 26–31 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Tencé, S., Chevalier, B.: Magnetic and magnetocaloric properties of Gd2In0.8X0.2 compounds (X = al,Ga,Sn,Pb). J. Magn. Magn. Mater. 399, 46–50 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    Akhter, S., Paul, D. P., Hoque, S. M., Hakim, M. A., Hudl, M., Mathieu, R., Nordblad, P.: Magnetic and magnetocaloric properties of Cu1−xZnxFe2O4(x = 0.6, 0.7, 0.8) ferrites. J. Magn. Magn. Mater. 367, 75–80 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    Masrour, R., Jabar, A., Benyoussef, A., Hamedoun, M., Hlil, E. K.: Monte Carlo simulation study of magnetocaloric effect in NdMnO3 perovskite. J. Magn. Magn. Mater. 401, 91–95 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    Czaja, P., Przewoźnik, J., Fitta, M., Baanda, M., Chrobak, A., Kania, B., Zackiewicz, P., Wójcik, A., Szlezynger, M., Maziarz, W.: Effect of ball milling and thermal treatment on exchange bias and magnetocaloric properties of Ni48Mn39.5Sn10.5Al2 ribbons. J. Magn. Magn. Mater. 401, 223–230 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    Mansouri, M., Omrani, H., Cheikhrouhou-Koubaa, W., Koubaa, M., Madouri, A., Cheikhrouhou, A.: Effect of vanadium doping on structural, magnetic and magnetocaloric properties of La0.5Ca0.5MnO3. J. Magn. Magn. Mater. 401, 593–599 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    Silva-Santana, M. C., da Silva, C. A., Barrozo, P., Plaza, E. J. R., delos Santos Valladares, L., Moreno, N. O.: Magnetocaloric and magnetic properties of SmFe0.5Mn0.5O3 complex perovskite. J. Magn. Magn. Mater. 401, 612–617 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    Betancourt, I., Lopez Maldonado, L., Elizalde Galindo, J. T.: Magnetic properties and magnetocaloric response of mixed valence La2/3Ba1/3Mn1−xFexO3 manganites. J. Magn. Magn. Mater. 401, 812–815 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    Oubla, M., Lamire, M.: Structural, magnetic and magnetocaloric properties of layered perovskite La1.1Bi0.3Sr1.6Mn2O7. J. Magn. Magn. Mater. 403, 114–117 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    Li, Z., Zhang, Y. L., Xu, K., Jing, C.: Large magnetocaloric effect related to martensitic transformation in Ni50Co2Mn33In15 textured alloy. Physica B 476, 179–182 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Jerbi, A., Krichene, A., Chniba-Boudjada, N., Boujelben, W.: Magnetic and magnetocaloric study of manganite compounds Pr0.5A0.05Sr0.45MnO3(A = NaandK) and composite. Physica B 477, 75–82 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    Thanh, T.D., Manh, T.V., Ho, T.A., Telegin, A., Phan, T.L., Yu, S.C.: Universal behavior of magnetocaloric effect in a layered perovskite La1.2Sr1.8Mn2O7 single crystal. Physica B.  https://doi.org/10.1016/j.physb.2015.09.01 (2015)
  48. 48.
    Zhanh, C. L., Shi, H. F., Ye, E. J., Nie, Y. G., Han, Z. D., Wang, D. H.: Magnetostructural transition and magnetocaloric effect in MnCoGe-NiCoGe system. J Alloys Compd 639, 36–39 (2015)CrossRefGoogle Scholar
  49. 49.
    Nedelko, N., Lewinska, S., Pashchenko, A., Radelytskyi, I., Diduszko, R., Zubov, E., Lisowski, W., Sobczak, J. W., Dyakonov, K., Slawska-Waniewska, A., Dyakonov, V., Szymczak, H.: Magnetic properties and magnetocaloric effect in La0.7Sr0.3xBixMnO3 manganites. J. Alloys Compd 640, 433–439 (2015)CrossRefGoogle Scholar
  50. 50.
    Li, J, Law, J Y, Huo, J, He, A, Man, Q, Chang, C, Men, H., Wang, J, Wang, X, Li, R. -W.: Magnetocaloric effect of fe–RE–b–nb (RE = tb,HoorTm) bulk metallic glasses with high glass-forming ability. J. Alloys Compd 644, 346–349 (2015)CrossRefGoogle Scholar
  51. 51.
    Phong, P. T., Bau, L. V., Hoan, L. C., Manh, D. H., Phuc, N., Lee, I. -J.: B-site aluminum doping effect on magnetic, magnetocaloric and electro-transport properties of La,0.7Sr0.3Mn1xAlxO3. J Alloys Compd 645, 243–249 (2015)CrossRefGoogle Scholar
  52. 52.
    Khlifa, H. B., Regaieg, Y., Cheikhrouhou-Koubaa, W., Koubaa, M., Cheikhrouhou, A.: Structural, magnetic and magnetocaloric properties of K-doped Pr0.8Na0.2−xKxMnO3 manganites. J. Alloys Compd. 650, 676–683 (2015)CrossRefGoogle Scholar
  53. 53.
    Yu, H. Y., Zhu, Z. R., Lai, J. W., Zheng, Z. G., Zeng, D. C., Zhang, J. L.: Enhance magnetocaloric effects in Mn1.15Fe0.85P0.52Si0.45B0.03 alloy achieved by copper-mould casting and annealing treatments. J. Alloys Compd. 649, 1043–1047 (2015)CrossRefGoogle Scholar
  54. 54.
    Mo, Z. -J., Hao, Z. -H., Shen, J., Li, L., Wu, J. -F., Hu, F. -X., Sun, J. -R., Shen, B. -G.: Observation of giant magnetocaloric effect in EuTi1−xCrxO3. J. Alloys Compd. 649, 674–678 (2015)CrossRefGoogle Scholar
  55. 55.
    Çetin, S. K., Acet, M., Günes, M., Ekicibil, A., Farle, M.: Magnetocaloric effect in (La1−xSmx)0.67Pb0.33MnO3(0x0.3) manganites near room temperature. J. Alloys Compd. 650, 285–294 (2015)CrossRefGoogle Scholar
  56. 56.
    Liu, Y., Shen, F. R., Zhang, M., Bao, L. F., Wu, R. R., Zhao, Y. Y., Hu, F. X., Wang, J., Zuo, W. L., Sun, J. R., Shen, B. G.: Stress modulated martensitic transition and magnetocaloric effect in hexagonal Ni2In-type MnCoGe1−xInx alloys. J. Alloys Compd. 649, 1048–1052 (2015)CrossRefGoogle Scholar
  57. 57.
    Wang, G. F., Zhao, Z. R., Zhang, X. F.: Influence of demagnetizing field on the magnetocaloric effect and critical behavior in Mn39Co26Ge35. J. Alloys Compd. 651, 72–77 (2015)CrossRefGoogle Scholar
  58. 58.
    Li, Y. W., Zhang, H., Yan, T., Long, K. W., Wang, H. S., Xue, Y. J., Cheng, C., Zhou, H. B.: Successive magnetic transitions and magnetocaloric effect in Dy3Al2 compound. J. Alloys Compd. 651, 278–282 (2015)CrossRefGoogle Scholar
  59. 59.
    Chen, X., Ramanujan, R. V.: Large magnetocaloric effect near room temperature in Mn-Fe-P-Ge nanostructured powders. J. Alloys Compd. 652, 393–399 (2015)CrossRefGoogle Scholar
  60. 60.
    Paramanik, T., Das, I.: Near room temperature giant magnetocaloric effect and giant negative magneto resistance in Co, Ga substituted Ni-Mn-In Heusler alloy. J. Alloys Compd. 654, 399–403 (2016)CrossRefGoogle Scholar
  61. 61.
    Yu, P., Zhang, N. Z., Cui, Y. T., Wen, L., Zeng, Z. Y., Xia, L.: Achieving an enhanced magneto-caloric effect by melt spinning a Gd55Co25Al20 bulk metallic glass into amorphous ribbons. J. Alloys Compd. 655, 353–356 (2016)CrossRefGoogle Scholar
  62. 62.
    Zhang, Y., Hou, L., Ren, Z., Li, X., Wilde, G.: Magnetic properties and magnetocaloric effect in TmZnAl and TmAgAl compounds. J. Alloys Compd. 656, 63–639 (2016)Google Scholar
  63. 63.
    Phong, P. T., Bau, L. V., Hoan, L. C., Manh, D. H., Phuc, N. X., Lee, I. -J.: Effect of B-site Ti doping on the magnetic, low-field magnetocaloric and electrical transport properties of La0.7Sr0.3Mn1−xTixO3 perovskites. J. Alloys Compd. 656, 920–928 (2016)CrossRefGoogle Scholar
  64. 64.
    Anwar, M.S., Ahmed, F., Koo, B.H.: Enhanced relative cooling power of Ni1−xZnxFe2O4(0x0.7) ferrites. Acta Materialia 71, 100–107 (2014)CrossRefGoogle Scholar
  65. 65.
    Wang, G. F., Li, L. R., Zhao, Z. R., Yu, X. Q., Zhang, X. F.: Structural and magnetocaloric effect of Ln0.67Sr0.33MnO3(Ln = La,P r a n d N d) nanoparticles. Ceram. Int. 40, 16449–16454 (2014)CrossRefGoogle Scholar
  66. 66.
    Andrade, V. M., Caraballo Vivas, R. J., Pedro, S. S., Tedesco, J. C. G., Rossi, A. L., Coelho, A. A., Rocco, D. L., Reis, M. S.: Magnetic and magnetocaloric properties of La,0.6Ca0.4MnO3 tunable by particle size and dimensionality. Acta Materialia 102, 49–55 (2016)CrossRefGoogle Scholar
  67. 67.
    Thanh, T. D., Nan, W. Z., Nam, G., Van, H. T., You, T. S., Phan, T. L., Yu, S. C.: Conventional and inverse magnetocaloric effects, and critical behaviors in Ni43Mn46Sn8In3 alloy. Current Appl. Phys. 15, 1200–1204 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. Raghu Ram
    • 1
  • M. Prakash
    • 1
  • U. Naresh
    • 1
  • N. Suresh Kumar
    • 2
  • T. Sofi Sarmash
    • 1
  • T. Subbarao
    • 1
  • R. Jeevan Kumar
    • 1
  • G. Ranjith Kumar
    • 4
    • 5
  • K. Chandra Babu Naidu
    • 3
  1. 1.Department of PhysicsSri Krishnadevaraya UniversityAnantapurIndia
  2. 2.Department of PhysicsJNTUAAnantapurIndia
  3. 3.Srinivasa Ramanujan Institute of TechnologyAnantapurIndia
  4. 4.Department of Applied SciencesREVA UniversityBangaloreIndia
  5. 5.Department of PhysicsRayalaseema UniversityKurnoolIndia

Personalised recommendations