Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3371–3378 | Cite as

Chemically Synthesized FeCo Powder for Advanced Applications

  • Vasily A. BautinEmail author
  • Nikita S. Kholodkov
  • Alexander G. Seferyan
  • Nikolai A. Usov
Original Paper


Very weak stray magnetic fields, H ∼ 10− 4 Oe, of an assembly of FeCo particles of mesoscopic dimensions, d = 10–50 μm, are investigated using a sensitive scanning giant magneto-impedance magnetometer. Direct magnetic force microscopy measurement of individual FeCo particles reveals a complicated domain structure. It is proved, however, that the mean square value of the stray magnetic field of a dilute assembly of FeCo particles randomly distributed on the plane is a statistically well-defined quantity. It depends on the average particle diameter, average distance between the particles, and average particle magnetization per unit volume. It is shown that the average particle magnetization can be determined using a measured mean square value of the stray magnetic field and geometrical parameters of the assembly obtained from optical measurement.


FeCo powder Chemical synthesis Magnetic properties Giant magneto-impedance magnetometer Stray magnetic field 



We acknowledge the funding from the Russian Ministry of Education and Science (Grant RFMEFI57815X0128).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Michaeli, W., Hopmann, C., Fragner, J.: Injection moulding of highly filled soft magnetic compounds for the production of complex electric/electronic (micro-) parts. Macromol. Symp. 338(1), 28–35 (2014). CrossRefGoogle Scholar
  2. 2.
    Lee, J., Lee, J., Min, K., Cheon, Y.: Miniaturized antennas with reduced hand effects in mobile phones using magneto-dielectric material. IEEE Antennas Wirel. Propag. Lett. 13, 935–938 (2014). ADSCrossRefGoogle Scholar
  3. 3.
    Imgrund, P., Rota, A., Petzoldt, F., Simchi, A.: Manufacturing of multi-functional micro parts by two-component metal injection moulding. Int. J. Adv. Manuf. Technol. 33(1–2), 176–186 (2007). CrossRefGoogle Scholar
  4. 4.
    Yagi, M., Endo, I., Otsuka, I., Yamamoto, H., Okuno, R., Koshimoto, H., Shintani, A: Magnetic properties of Fe-based amorphous powder cores produced by a hot-pressing method. J. Magn. Magn. Mater. 215, 284–287 (2000). ADSCrossRefGoogle Scholar
  5. 5.
    Piotter, V.: Micro metal injection molding (MicroMIM). In: Handbook of Metal Injection Molding, pp. 307–337 (2012). CrossRefGoogle Scholar
  6. 6.
    Ramadan, Q., Samper, V.D., Puiu, D. P., Yu, C.: Fabrication of three-dimensional magnetic microdevices with embedded microcoils for magnetic potential concentration. J. Microelectromech. Syst. 15(3), 624–638 (2006). CrossRefGoogle Scholar
  7. 7.
    Bas, J.A., Calero, J.A., Dougan, M.J.: Sintered soft magnetic materials. Properties and applications. J. Magn. Magn. Mater. 254(255), 391–398 (2003). ADSCrossRefGoogle Scholar
  8. 8.
    Zeng, Q., Baker, I., McCreary, V., Yan, Z.: Soft ferromagnetism in nanostructured mechanical alloying FeCo-based powders. J. Magn. Magn. Mater. 318(12), 28–38 (2007). ADSCrossRefGoogle Scholar
  9. 9.
    Kuhrt, C., Schultz, L.: Formation and magnetic properties of nanocrystalline mechanically alloyed Fe-Co and Fe-Ni. J. Appl. Phys. 10, 6588–6590 (1993). ADSCrossRefGoogle Scholar
  10. 10.
    Chikazumi, S.: Physics of Ferromagnetism. Oxford University Press, New York (1997)Google Scholar
  11. 11.
    Sundar, R.S., Deevi, S.C.: Soft magnetic FeCo alloys: alloy development, processing, and properties. Int. Mater. Rev. 50(3), 157–192 (2005). CrossRefGoogle Scholar
  12. 12.
    Kishimoto, M., Latiff, H., Kita, E., Yanagihara, H.: Characterization of FeCo particles synthesized via co-precipitation, particle growth using flux treatment and reduction in hydrogen gas. J. Magn. Magn. Mater. 432, 404–409 (2017). ADSCrossRefGoogle Scholar
  13. 13.
    Kandapallil, B., Colborn, R.E., Bonitatibus, P.J., Johnson, F.: Synthesis of high magnetization Fe and FeCo nanoparticles by high temperature chemical reduction. J. Magn. Magn. Mater. 378, 535–538 (2015). ADSCrossRefGoogle Scholar
  14. 14.
    Ma, J., Qin, M., Zhang, L., Zhang, R., Qu, X.: Microstructure and magnetic properties of Fe-50%Ni alloy fabricated by powder injection molding. J. Magn. Magn. Mater. 329, 24–29 (2013). ADSCrossRefGoogle Scholar
  15. 15.
    Upadhyaya, GS: Powder injection moulding: process and equipment. In: Walcher, H., Maetzig, M (eds.) Powder Metallurgy Technology and Equipment: Selected Topics. Materials Science Foundations, vol. 73, pp. 111–133 (2012)Google Scholar
  16. 16.
    Silva, A., Lozano, J.A., Machado, R., Escobar, J.A., Wendhausen, P.A.P.: Study of soft magnetic iron cobalt based alloys processed by powder injection molding. J. Magn. Magn. Mater. 320(14) (2008). ADSCrossRefGoogle Scholar
  17. 17.
    Bautin, V.A., Gudoshnikov, S.A., Seferyan, A.G., Usov, N.A.: Microstructure and magnetic properties of bulk FeCo alloys fabricated from mechanically alloying and chemically synthesized powders. J. Supercond. Nov. Magn. 30, 1281–1286 (2017)CrossRefGoogle Scholar
  18. 18.
    Yue, L.P., Liou, S.H.: Magnetic force microscopy studies of magnetic features and nanostructures. In: Scanning Probe Microscopy in Nanoscience and Nanotechnology. Nanoscience and Technology, vol. 2, pp. 287–319 (2011), Google Scholar
  19. 19.
    Cordova, G., Lee, B.Y., Leonenko, Z.: Magnetic force microscopy for nanoparticle characterization. NanoWorld J. 2(1), 10–14 (2016). CrossRefGoogle Scholar
  20. 20.
    Dufay, B., Saez, S., Dolabdjian, C., Yelon, A., Menard, D.: Development of a high sensitivity giant magneto-impedance magnetometer: Comparison with a commercial flux-gate. IEEE Trans. Magn. 49(1), 85–88 (2013). ADSCrossRefGoogle Scholar
  21. 21.
    Gudoshnikov, S.A., Bardin, I.V., Bautin, V.A., Nozdrin, A.G., Popova, A.V., Prokhorova, Yu. V., Skomarovskii, V.S., Lyubimov, B.Ya., Seferyan, A.G., Usov, N.A.: A high-sensitivity scanning magnetometer based on the giant magneto-impedance effect for measuring local magnetic fields of corrosion currents. Tech. Phys. Lett. 42(5), 520–523 (2016). ADSCrossRefGoogle Scholar
  22. 22.
    Bardin, I.V., Bautin, V.A., Gudoshnikov, S.A., Ljubimov, B.Y., Usov, N.A.: Measurement of weak magnetic field of corrosion current of isolated corrosion center. AIP Adv. 5(1) (2015). ADSCrossRefGoogle Scholar
  23. 23.
    Bardin, I.V., Bautin, V.A., Gudoshnikov, S.A., Seferyan, A.G., Ljubimov, B.Y., Usov, N.A.: Investigation of quasi-stationary magnetic fields of corrosion currents of zinc copper cells using giant magneto-impedance magnetometer. Corros. Sci. 109, 257–262 (2016). CrossRefGoogle Scholar
  24. 24.
    Nečas, D., Klapetek, P.: Gwyddion: an open-source software for SPM data analysis. Open Phys. 10(1) (2012).
  25. 25.
    Thiaville, A, Miltat, J.: Magnetic force microscopy: images of nanostructures and contrast modeling. In: Hopster, H, Oepen, HP (eds.) NanoScience and Technology, No.XVIII, p. 128. Springer, Berlin (2005)CrossRefGoogle Scholar
  26. 26.
    Peng, H.-X., Qin, F., Phan, M.-H.: Ferromagnetic Microwire Composites (1st ed.). Springer International Publishing. (2016)CrossRefGoogle Scholar
  27. 27.
    Bautin, V.A., Kostitsyna, E.V., Popova, A.V., Gudoshnikov, S.A., Ignatov, A.S., Usov, N.A.: Glass shell etching to control residual quenching stress in Co-rich amorphous ferromagnetic microwires. J. Alloys Compd. 731, 18–23 (2018). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National University of Science and Technology “MISiS”MoscowRussia
  2. 2.Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave PropagationRussian Academy of Sciences (IZMIRAN)MoscowRussia

Personalised recommendations