Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3361–3370 | Cite as

The Effect of Oxygen Adsorption for Vacancy-Induced d0 Magnetism in HfO2 (110) Surface

  • Hui Jia
  • Wenhao Liang
  • Min Zhou
  • Ensi Cao
  • Zhi Yang
  • Wentao Hao
  • Yongjia Zhang
Original Paper
  • 81 Downloads

Abstract

Based on the density functional theory, we investigated the electronic structures and magnetic properties of the oxygen adsorption on the defective cubic HfO2 (110) surface. The adsorption capacities of the perfect and defective surfaces follow in the sequence as: oxygen-deficient model >perfect surface >hafnium-deficient model. When the oxygen molecules adsorb on the nonmagnetic perfect HfO2 surface, the system has a local magnetic moment and the antiferromagnetic coupling is more stable. For the defective cubic HfO2 (110) surface, it is found that the oxygen vacancy is more easy to form than the hafnium vacancy by comparing the vacancy formation energy. And the hafnium vacancy could induce a large magnetic moment while the oxygen vacancy alone could not. After adsorption of the oxygen molecule, the nonmagnetic oxygen-deficient HfO2 model is transformed into the magnetic surface. On the contrary, the introduction of adsorbed oxygen molecule causes the magnetic moment of hafnium-deficient HfO2 surface to reduce. Additionally, if the oxygen molecules adsorb on the defective HfO2 (110) surface, the ferromagnetic coupling is energetically favorable.

Keywords

Surface Magnetism First-principle calculations Vacancy Oxygen adsorption 

Notes

Funding Information

This work was supported by the National Natural Science Foundation of China (Grant No. 11604234, 11404236, and 51602214), Special Funds of the National Natural Science Foundation of China (Grant No. 11447189), and Natural Science Foundation of Shanxi (Grant No. 2015021026 and 201601D202010).

References

  1. 1.
    Kitchen, D., Richardella, A., Tang, J.M., et al.: Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions. Nature 442, 436–439 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Sato, K., Katayama-Yoshida, H.: Hyperfine interactions and magnetism of 3d transition-metal-impurities in II-VI and III-v compound-based diluted magnetic semiconductors. Hyperfine Interact. 136, 737–742 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Deka, S., Joy, P.A.: Synthesis and magnetic properties of Mn doped ZnO nanowires. Solid State Commun. 142, 190–194 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Wang, Y.Q., Yuan, S.L., Liu, L., et al.: Ferromagnetism in Fe-doped ZnO bulk samples. J. Magn. Magn. Mater. 320, 1423–1426 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Park, J.H., Kim, M.G., Jang, H.M., et al.: Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett. 84, 1338–1340 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Zhou, S., Potzger, K., Von Borany, J., et al.: Crystallographically oriented Co and Ni nanocrystals inside ZnO formed by ion implantation and postannealing. Phys. Rev. B 77, 035209 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Kaspar, T.C., Droubay, T., Heald, S.M., et al.: Hidden ferromagnetic secondary phases in cobalt-doped ZnO epitaxial thin films. Phys. Rev. B 77(R), 201303 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Venkatesan, M., Fitzgerald, C.B., Coey, J.M.D.: Thin films: unexpected magnetism in a dielectric oxide. Nature 430, 630–630 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Demkov, A.A.: Investigating alternative gate dielectrics: a theoretical approach. Phys. Status Solidi B 226, 57–67 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Zhao, X., Vanderbilt, D.: First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide. Phys. Rev. B 65, 233106 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Hong, N.H.: Magnetism due to defects/oxygen vacancies in HfO2 thin films. Phys. Status Solidi (c) 4, 1270–1275 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Liu, X., Chen, Y., Wang, L., Peng, D.L.: Transition from paramagnetism to ferromagnetism in HfO2 nanorods. J. Appl. Phys. 113, 076102 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Ran, J., Yan, Z.: Observation of ferromagnetism in highly oxygen-deficient HfO2 films. J. Semicond. 30, 102002 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Pemmaraju, C.D., Sanvito, S.: Ferromagnetism driven by intrinsic point defects in HfO2. Phys. Rev. Lett. 94, 217205 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Weng, H., Dong, J.: Ferromagnetism in HfO2 induced by hole doping: first-principles calculations. Phys. Rev. B 73, 132410 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Beltrán, J., Muñoz, M., Hafner, J.: Structural, electronic and magnetic properties of the surfaces of tetragonal and cubic HfO2. New J. Phys. 10, 063031 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Wang, M., Feng, M., Lu, Y.: Possible origin of ferromagnetism in undoped monoclinic HfO2 film. Comput. Mater. Sci. 92, 120–126 (2014)CrossRefGoogle Scholar
  18. 18.
    Chen, G.H., Hou, Z.F., Gong, X.G.: Structural and electronic properties of cubic HfO2 surfaces. Comp. Mater. Sci. 44, 46–52 (2008)CrossRefGoogle Scholar
  19. 19.
    Kresse, G., Hafner, J.: Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996)CrossRefGoogle Scholar
  21. 21.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    Perdew, J., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    Janotti, A., Van de Walle, C.G.: Native point defects in ZnO. Phys. Rev. B 76, 165202 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Zhang, Y., Cao, E., Sun, L., et al.: Adsorption of NO on the SrFeO3 (001) surface: a DFT study. Comp. Mater. Sci. 102, 135–139 (2015)CrossRefGoogle Scholar
  27. 27.
    Li, N., Sakidja, R., Ching, W.Y.: Ab initio study on the adsorption mechanism of oxygen on Cr2AlC (0001) surface. Appl. Surf. Sci. 315, 45–54 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    Liu, X., Hu, J., Cheng, B., et al.: First-principles study of O2 adsorption on the LaFeO3 (010) surface. Sensor. Actuat. B-Chem. 139, 520–526 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, College of Physics and OptoelectronicsTaiyuan University of TechnologyTaiyuanPeople’s Republic of China

Personalised recommendations