Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3331–3337 | Cite as

Phase Transition in a Spin-1/2 and Spin-1 Ising Bilayer Film with Non-magnetic Inter-layers

  • T. Kaneyoshi
Original Paper

Abstract

The phase transition, phase diagrams, and magnetizations of an Ising bilayer film with non-magnetic inter-layers are investigated by the use of the effective field theory with correlations. The system is consisted of two magnetic layers where upper and lower layers are consisted of spin-1/2 atoms and spin-1 atoms with a single-ion anisotropy. It is examined how the system may exhibit the tricritical behavior and some characteristic features of ferrimagnetism. The effects of non-magnetic layers on the magnetic properties are clarified.

Keywords

Phase diagrams Magnetizations Indirect exchange interaction Ising bilayer film 

References

  1. 1.
    Kaneyoshi, T.: Differential operator technique in the Ising spin systems. Acta Phys. Pol. A 83, 703 (1993)CrossRefGoogle Scholar
  2. 2.
    Sarli, N., Akbudak, S., Elliatioghu, M.R.: The peak effect (PE) region of the antiferromagnetic two layer Ising nanographenes. Physica B 452, 18 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Santos, J.P., Sa Barreto, F.C.: An effective-field theory of trilayer Ising nanostructure: thermodynamic and magnetic properties. J. Magn. Magn. Mater. 439, 114 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Jiang, W., Yang, Y.Y., Guo, A.B.: Study on magnetic properties of a nano-graphene bilayer. Carbon 95, 190 (2015)CrossRefGoogle Scholar
  5. 5.
    Kaneyoshi, T.: Effects of a transverse field in two mixed-spin Ising bilayer films. Nanomaterials 7, 256 (2017)CrossRefGoogle Scholar
  6. 6.
    Masrour, M., Jabar, A.: Magnetic properties of bilayer graphene: a Monte Carlo study. J. Comput. Electron. 16, 12 (2017)CrossRefGoogle Scholar
  7. 7.
    Mhirech, A., Aoului, A., Alaoui-Ismalili, A., Bahmad, L.: Study of RKKY interaction in a bilayer graphene structure with non-equivalent planes. J. Supercond. Nov. Magn. 30, 3189 (2017)CrossRefGoogle Scholar
  8. 8.
    Jabar, A., Masrour, R.: Monte Carlo study of the magnetic properties in a bilayer dendrimer structure with non-magnetic layers. Solid St. Commun. 268, 38 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Kaneyoshi, T.: Ferrimagnetism in an Iaing bilayer film with a transverse field and nonmagnetic interlayers. J. Supercond. Nov. Magn. published online (2017)Google Scholar
  10. 10.
    Kaneyoshi, T.: Effects of indirect exchange interactions in a mixed=spin bilayer film with nonmagnetic layers. J. Supercond. Nov. Magn. published online (2017)Google Scholar
  11. 11.
    Kaneyoshi, T.: Introduction to Amorphous Magnets. World Scientific, Singapore (1992)CrossRefGoogle Scholar
  12. 12.
    Fabritius, T., Laflorencie, N., Wessel, S.: Finite-temperature ordering of dilute graphene antiferromagnets. Phys. Rev. B 82, 035402 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Honmura, R., Kaneyoshi, T.: Contribution to the new type of effective-field theory of the Ising model. J. Phys. C 12, 3979 (1979)ADSCrossRefGoogle Scholar
  14. 14.
    Zernike, F.: The propagation of order in co-operative phenomena: part 1. The AB case. Physica 7, 565 (1940)ADSCrossRefGoogle Scholar
  15. 15.
    Liu, J.W., Xin, H.Z., Chen, L.S., Zhang, Y.C.: Effective-field and Monte Carlo studies of mixed spin-2 and spin-1/2 Ising diamond chain. Chin. Phys. B 22, 027501 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Magoussi, H., Zaim, A., Kerouad, M.: Magnetic properties of a nanoscaled ferromagnetic thin film; Monte Carlo and effective field treatments. Superlattices Microstruc. 89, 188 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Zhang, Q., Wei, G., Xin, Z., Liang, Y.: Effective-field theory and Monte Carlo study of a layered mixed spin-1 and spin-2 Ising system on honeycomb lattice. J. Magn. Magn. Mater. 280, 14 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Boughrara, M., Kerouad, M., Zaim, A.: Phase diagrams and magnetic properties of a cylindrical Ising nanowire: Monte Carlo and effective field treatments. J. Magn. Magn. Mater. 368, 169 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Yuksel, Y., Akinci, U.: A comparative study of critical phenomena and magnetocaloric properties of ferromagnetic ternary alloys. J. Phys. Chem. Solids 112, 143 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Herpin, A.: Theory of Magnetism. Press University of France, Paris (1968)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nagoya UniversityNagoyaJapan

Personalised recommendations