Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3357–3360 | Cite as

Phenomenological Modeling of Magnetocaloric Effect in La0.7SrxMnO3−δ

  • Adly H. El-Sayed
  • Mahmoud A. Hamad
Original Paper

Abstract

The magnetocaloric effect (MCE) is investigated for La0.7SrxMnO3−δ (0.1 ≤ x ≤ 0.3) system closes to a phase transition from a ferromagnetic to a paramagnetic state. The results recommend that La0.7SrxMnO3−δ (LSMO) samples have potential application as a magnetic refrigerant (MR) in an extended temperature range. Consequently, it is hoped that LSMO samples can be MR materials in low magnetic field shifts.

Keywords

Phenomenological model Magnetocaloric effect La0.7SrxMnO3−δ Magnetic entropy change 

References

  1. 1.
    El-Sayed, A.H., Hamad, M.A.: Phenomenological modeling of magnetocaloric effect for Ni56Fe28Ga26 alloy. J. Supercond. Nov. Magn.  https://doi.org/10.1007/s10948-017-4413-x CrossRefGoogle Scholar
  2. 2.
    Hamad, M.A.: Theoretical investigations on electrocaloric properties of (111)-oriented PbMg1/3Nb2/3 O 3 single crystal. J. Adv. Ceram. 2, 308–312 (2013)CrossRefGoogle Scholar
  3. 3.
    Hamad, M.A.: Electrocaloric properties of Zr-modified Pb(Mg1/3Nb2/3)O3 polycrystalline ceramics. J. Adv. Dielect. 3, 1350029 (2013)CrossRefGoogle Scholar
  4. 4.
    Hamad, M.A.: Giant isothermal entropy change in (111)-oriented PMN-PT thin film. J. Adv. Dielect. 4, 1450026 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Hamad, M.A.: Magnetocaloric effect of perovskite Eu0.5Sr0.5CoO3. J. Supercond. Nov. Magn. 27, 277–280 (2014)CrossRefGoogle Scholar
  6. 6.
    Hamad, M.A.: Magnetocaloric effect in half-metallic double perovskite Sr0.4Ba1.6-xSrxFeMoO6. Int. J. Thermophys 34, 2144–2151 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Hamad, M.A.: Simulation of magnetocaloric properties of antiperovskite structural Ga1−XAlXCMn3. J. Supercond. Nov. Magn. 27, 2569–2572 (2014)CrossRefGoogle Scholar
  8. 8.
    Hamad, M.A.: Magnetocaloric Effect in Sr0.4Ba1.6−xLax FeMoO6. J. Supercond. Nov. Magn. 27, 1777–1780 (2014)CrossRefGoogle Scholar
  9. 9.
    Hamad, M.A.: Magnetocaloric effect in La1−xCexMnO3. J. Adv. Ceram. 4, 206–210 (2015)CrossRefGoogle Scholar
  10. 10.
    Hamad, M.A.: Magnetocaloric effect in Sr2FeMoO6/Ag composites. Processing and Application of Ceramics 9, 11–15 (2015)CrossRefGoogle Scholar
  11. 11.
    Hamad, M.A.: Lanthanum concentration effect of magnetocaloric properties in LaxMnO3−δ. J. Supercond. Nov. Magn. 28, 173–178 (2015)CrossRefGoogle Scholar
  12. 12.
    Hamad, M.A.: Calculations of the Low Field Magnetocaloric Effect in Fe4MnSi3Bx. J. Supercond. Nov. Magn. 28, 2223–2227 (2015)CrossRefGoogle Scholar
  13. 13.
    Hamad, M.A.: Monte Carlo Calculations of Magnetic Heat Capacity of La0.7Sr0.3−δ. J. Supercond. Nov. Magn. 28, 2525–2528 (2015)CrossRefGoogle Scholar
  14. 14.
    Hamad, M.A.: Great magnetocaloric effect of La0.27Nd0.4 Ca0.33MnO3. J. Supercond. Nov. Magn. 28, 3365–3369 (2015)CrossRefGoogle Scholar
  15. 15.
    Hamad, M.A.: J. Supercond. Nov. Magn. 29, 1539 (2016)CrossRefGoogle Scholar
  16. 16.
    Hamad, M.A.: Effects of addition of rare earth on magnetocaloric effect in Fe82Nb2B14. J. Supercond. Nov. Magn. 28, 3111–3115 (2015)CrossRefGoogle Scholar
  17. 17.
    Hamad, M.A.: J. Supercond. Nov. Magn. 26, 669 (2013)CrossRefGoogle Scholar
  18. 18.
    Hamad, M.A.: Arab. J. Sci. Eng. 39, 569 (2014)CrossRefGoogle Scholar
  19. 19.
    Anwar, M.S., Ahmed, F., Kim, G.W., Heo, S.N., Koo, B.H.: J. Korean Phys. Soc. 62, 1974 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Gharbage, B., Henault, M., Pagnier, T., Hammou, A.: Mater. Res. Bull. 26, 1001 (1991)CrossRefGoogle Scholar
  21. 21.
    Dho, J., Kim, W.S., Hur, N.H.: Phys. Rev. Lett. 89, 027202 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Hamad, M.A.: Phase Transit. 85, 106 (2012)CrossRefGoogle Scholar
  23. 23.
    Mudryk, Y., Paudyal, D., Pecharsky, V.K., Gschneidner, K.A.: J. Appl. Phys. 109, 07A924 (2011)CrossRefGoogle Scholar
  24. 24.
    Oliveira, N., von Ranke, P.: Phys. Rep. 489, 89 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Buschow, K.H.J.: Handbook of Magnetic Materials, vol. 15. Elsevier, Amsterdam (2003)Google Scholar
  26. 26.
    Hamad, M.A.: J. Supercond. Nov. Magn. 29, 1539 (2016)CrossRefGoogle Scholar
  27. 27.
    Hamad, M.A.: Process. Appl. Ceram. 10, 33 (2016)CrossRefGoogle Scholar
  28. 28.
    Messaoui, I., Riahi, K., Koubaa, W.C., Koubaa, M., Cheikhrouhou, A., Hlil, E.K.: Ceram. Int.s 42, 6825 (2016)CrossRefGoogle Scholar
  29. 29.
    Liu, S.P., Tang, G.D., Li, Z.Z., Ji, D.H., Li, Y.F., Chen, W., Hou, D.L.: Phys. B 406, 869 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Guo, Z.B., Du, Y.M., Zhu, J.S., Huang, H., Ding, W.P., Feng, D.: Phys. Rev. Lett. 78, 1142 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    Jacob, K.T., Attaluri, M.: J. Mater. Chem. 13, 934 (2003)CrossRefGoogle Scholar
  32. 32.
    Hamad, M.A.: J. Supercond. Nov. Magn. 31, 337 (2018)CrossRefGoogle Scholar
  33. 33.
    Dwight, K., Menyux, N.: Phys. Rev. 119(5), 1470 (1960)ADSCrossRefGoogle Scholar
  34. 34.
    Ewas, A.M., Hamad, M.A.: Ceram. Int. 43, 7660–7662 (2017)CrossRefGoogle Scholar
  35. 35.
    Hamad, M.A.: Phase Transit. 87, 460 (2014)CrossRefGoogle Scholar
  36. 36.
    Hamad, M.A.: Theoretical work on effect of pressure on magnetocaloric properties of La0.7Ca0.3MnO3. Int. J. Thermophys. 36, 2748–2754 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Hamad, M.A.: J. Supercond. Nov. Magn. 28, 3329–3333 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  2. 2.High Institute of Engineering and TechnologyKing Marriott AcademyAlexandriaEgypt

Personalised recommendations