Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3315–3322 | Cite as

Synthesis and Characterization of NiFe2O4 Nanoparticles for the Enhancement of Direct Sunlight Photocatalytic Degradation of Methyl Orange

  • HirthnaEmail author
  • S. Sendhilnathan
  • P. Iyyappa Rajan
  • T. Adinaveen
Original Paper


The current investigation shows the simple and direct sunlight-mediated photocatalytic degradation of methyl orange dye by quasi globular NiFe2O4 nanocrystals synthesized from the high-temperature chemical co-precipitation method. The experiment was carried out under direct sunlight which shows significant degradation results lead to the practical possibility of heterogeneous photocatalysis towards environmental remediation. The as-synthesized quasi globular NiFe2O4 nanocrystals also were characterized by well-known analytical measurements of their structural, morphological, bonding, surface area, band gap and magnetic properties prior to the photocatalytic experiments. The presence of active free radicals formed during the photocatalytic reaction was confirmed from the EPR signals recorded for the solution containing the photocatalyst and dye solution, and accordingly, the photocatalytic degradation mechanism was discussed.


Quasi globular NiFe2O4 Sunlight-mediated synthesis Photocatalytic degradation EPR free radical signals 



Dr. S. Sendhilnathan gratefully acknowledges the DST (Ref. no. SERC no. 100/IFD/7194/2010-11 dated December 10, 2010) for the financial assistance received through the project.


  1. 1.
    Nazir, S., Sami, S., Haider, S., Shahid, M., Sher, M., Warsi, M. F., Nadeem, Q., Khan, M. A.: Structural, spectral, dielectric and photocatalytic studies of Zr-Ni doped MnFe2O4 co-precipitated nanoparticles. Ceram. Int. 42, 13459–13463 (2016)CrossRefGoogle Scholar
  2. 2.
    Dong, P., Hou, G., Xi, X., Shao, R., Dong, F.: WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environ. Sci.: Nano 4, 539–557 (2017)Google Scholar
  3. 3.
    Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)ADSCrossRefGoogle Scholar
  4. 4.
    Natarajan, K., Bajaj, H. C., Tayade, R. J.: Direct sunlight driven photocatalytic activity of GeO2/monoclinic-BiVO4 nanoplate composites. Sol. Energ. 148, 87–97 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Huang, Y., Sudibya, H. G., Chen, P.: Detecting metabolic activities of bacteria using a simple carbon nanotube device for high-throughput screening of anti-bacterial drugs. Biosens. Bioelectron 26, 4257–4261 (2011)CrossRefGoogle Scholar
  6. 6.
    El Moussaoui, H., Mahfoud, T., Habouti, S., El Maalam, K., Ben Ali, M., Hamedoun, M.: Synthesis and magnetic properties of tin spinel ferrites doped manganese. J. Magn. Magn. Mater. 405, 181–186 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Anandan, S., Selvamani, T., Guru Prasad, G., Asiri, A. M., Wu, J. J.: Magnetic and catalytic properties of inverse spinel CuFe2O4 nanoparticles. J. Magn. Magn. Mater. 432, 437–443 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Gautam, S., Shandilya, P., Singh, V. P., Raizada, P., Singh, P.: Solar photocatalytic mineralization of antibiotics using magnetically separable NiFe2O4 supported onto graphene sand composite and bentonite. J. Water. Process. Eng. 14, 86–100 (2016)CrossRefGoogle Scholar
  9. 9.
    Lazarova, T., Georgieva, M., Tzankov, D., Voykova, D.: Influence of the type of fuel used for the solution combustion synthesis on the structure, morphology and magnetic properties of nanosized NiFe2O4. J. Alloys Compd. 700, 272–283 (2017)CrossRefGoogle Scholar
  10. 10.
    Peng, Y., Yi, Y., Li, L., Ai, H., Wang, X., Chen, L.: Fe-based soft magnetic composites coated with NiZn ferrite prepared by a co-precipitation method. J. Magn. Magn. Mater. 428, 148–153 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    El Hassani, K., Beakou, B. H., Kalnina, D., Oukani, E., Anouar, A.: Effect of morphological properties of layered double hydroxides on adsorption of azo dye methyl orange: A comparative study. Appl. Clay Sci. 140, 124–131 (2017)CrossRefGoogle Scholar
  12. 12.
    Soltani, T., Lee, B. -K.: Improving heterogeneous photo-Fenton catalytic degradation of toluene under visible light irradiation through Ba-doping in BiFeO3 nanoparticles. J. Mol. Catal. A: Chem. 425, 199–207 (2016)CrossRefGoogle Scholar
  13. 13.
    Peng, Z., Wu, D., Wang, W., Tan, F., Wang, X., Chen, J., Qiao, X.: Effect of metal ion doping on ZnO nanopowders for bacterial inactivation under visible-light irradiation. Powder Technol. 315, 73–80 (2017)CrossRefGoogle Scholar
  14. 14.
    Deraz, N. M., Omar, H.: Abd-Elkader: Preparation and characterization of nanomagnetic Ni-MgFeDeraz, N. M., Omar, H., Abd-Elkader: Preparation and characterization of nanomagnetic Ni-MgFe3O4 system for biological applications. J. Pure. Appl. Microbio. Microbiology 7, 333–339 (2013)Google Scholar
  15. 15.
    Deraz, N. M., Omar, H.: Abd-Elakader: Preparation and characterization of nano-magnetic Ni0.5Mg0.5Fe2O4 system for biological applications. J. Pure Appl. Microbio. 7, 339 (2013)Google Scholar
  16. 16.
    Selvam, N. C. S., Kumar, R. T., Kennedy, L. J., Vijaya, J. J.: Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and nano-structures. J. Alloys Compd. 509, 9809–9815 (2011)CrossRefGoogle Scholar
  17. 17.
    Maa, K., Zhub, J., Xiea, H., Wanga, H.: Effect of porous microstructure on the elastic modulus of plasma-sprayed thermal barrier coatings: experiment and numerical analysis. Surf. Coat. Technol. 235, 589–595 (2013)CrossRefGoogle Scholar
  18. 18.
    Hays, J., Reddy, K. M., Graces, N. Y., Engelhard, M. H., Shutthanandan, V., Luo, M., Xu, C., Giles, N. C., Wang, C., Thevuthasan, S., Punnoose, A.: Effect of Co doping on the structural, optical and magnetic properties of ZnO nanoparticles. J. Phys. Condens. Matter. 19, 203–206 (2007)CrossRefGoogle Scholar
  19. 19.
    Ren, A. O., Liu, C., Hong, Y., Shi, W., Lin, S., Li, P.: Enhanced visible-light-driven photocatalytic activity for antibiotic degradation using magnetic NiFe2O4/Bi2O3 heterostructures. Chem. Eng. J. 258, 301–308 (2014)CrossRefGoogle Scholar
  20. 20.
    Rahmayeni, Z., Novesar Jamarun, E., Arief, S.: Synthesis of ZnO-NiFe2,O4 magnetic nanocomposites by simple solvothermal method for photocatalytic dye degradation under solar light 32, 1411–1419 (2016). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hirthna
    • 1
    Email author
  • S. Sendhilnathan
    • 2
  • P. Iyyappa Rajan
    • 3
    • 4
  • T. Adinaveen
    • 5
  1. 1.Department of PhysicsUniversity College of Engineering - KanchipuramKanchipuramIndia
  2. 2.Department of PhysicsUniversity College of Engineering - PattukottaiTamil NaduIndia
  3. 3.Chemistry Division, School of Advanced SciencesVellore Institute of Technology (VIT) UniversityChennaiIndia
  4. 4.Indo-Korea Science and Technology CenterBengaluruIndia
  5. 5.Department of ChemistryMadras Christian CollegeChennaiIndia

Personalised recommendations