Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3175–3182 | Cite as

The Effect of Inhomogeneous Phase on the Critical Temperature of Smart Meta-superconductor MgB2

  • Honggang Chen
  • Yongbo Li
  • Guowei Chen
  • Longxuan Xu
  • Xiaopeng Zhao
Original Paper
  • 171 Downloads

Abstract

The critical temperature (TC) of MgB2, one of the key factors limiting its application, is highly desired to be improved. On the basis of the meta-material structure, we prepared a smart meta-superconductor structure consisting of MgB2 micro-particles and inhomogeneous phases by an ex situ process. The effect of inhomogeneous phase on the TC of smart meta-superconductor MgB2 was investigated. Results showed that the onset temperature (\(T_{\mathrm {C}}^{\text {on}}\)) of doping samples was lower than those of pure MgB2. However, the offset temperature (\({T}_{\mathrm {C}}^{\text {off}}\)) of the sample doped with Y2O3:Eu3+ nanosheets with a thickness of 2 ∼ 3 nm which is much less than the coherence length of MgB2 is 1.2 K higher than that of pure MgB2. The effect of the applied electric field on the TC of the sample was also studied. Results indicated that with the increase of current, \({T}_{\mathrm {C}}^{\text {on}}\) is slightly increased in the samples doping with different inhomogeneous phases. With increasing current, the \({T}_{\mathrm {C}}^{\text {off}}\) of the samples doped with nonluminous inhomogeneous phases was decreased. However, the \({T}_{\mathrm {C}}^{\text {off}}\) of the luminescent inhomogeneous phase doping samples increased and then decreased with increasing current.

Keywords

Smart meta-superconductor MgB2 Y2O3:Eu3+ nanosheets Inhomogeneous phase Applied electric field⋅ TC 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China for Distinguished Young Scholar under Grant No. 50025207.

References

  1. 1.
    Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Nature 410(6824), 63–64 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Yamashita, T., Buzea, C.: Supercond. Sci. Technol. 14(11), R115–R146 (2001)CrossRefGoogle Scholar
  3. 3.
    Slusky, J.S., Rogado, N., Regan, K.A., Hayward, M.A., Khalifah, P., He, T., Inumaru, K., Loureiro, S.M., Haas, M.K., Zandbergen, H.W., Cava, R.J.: Nature 410(6826), 343–345 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Luo, H., Li, C.M., Luo, H.M., Ding, S.Y.: J. Appl. Phys. 91(10), 7122 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    Cava, R.J., Zandbergen, H.W., Inumaru, K.: Phys. C. 385, 8–15 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Kazakov, S.M., Puzniak, R., Rogacki, K., Mironov, A.V., Zhigadlo, N.D., Jun, J., Soltmann, C., Batlogg, B., Karpinski, J.: Phys. Rev. B. 71(2), 024533 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Bianconi, A., Busby, Y., Fratini, M., Palmisano, V., Simonelli, L., Filippi, M., Sanna, S., Congiu, F., Saccone, A., Giovannini, M., De Negri, S.: J. Supercond. Nov. Magn. 20(7), 495–501 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Monni, M., Affronte, M., Bernini, C., Di Castro, D., Ferdeghini, C., Lavagnini, M., Manfrinetti, P., Orecchini, A., Palenzona, A., Petrillo, C., Postorino, P., Sacchetti, A., Sacchetti, F., Putti, M.: Physica C 460–462, 598–599 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Zhao, Y.G., Zhang, X.P., Qiao, P.T., Zhang, H.T., Jia, S.L., Cao, B.S., Zhu, M.H., Han, Z.H., Wang, X.L., Gu, B.L.: Physica C 361(2), 91–94 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Pendry, J.B., Holden, A.J., Stewart, W.J., Youngd, I.: Phys. Rev. Lett. 76, 4773 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., Trans, I.: Microw. Theory Tech. 47, 2075 (1999)CrossRefGoogle Scholar
  12. 12.
    Shelby, R.A., Smith, D.R., Schultz, S.: Science 292, 77 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Liu, H., Zhao, X.P., Yang, Y., Li, Q.W., Lv, J.: Adv. Mater. 20(11), 2050–2054 (2008)CrossRefGoogle Scholar
  14. 14.
    Qiao, Y.P., Zhao, X.P., Su, Y.Y.: J. Mater. Chem. 21(2), 394–399 (2011)CrossRefGoogle Scholar
  15. 15.
    Zhao, X.P.: J. Mater. Chem. 22(19), 9439–9449 (2012)CrossRefGoogle Scholar
  16. 16.
    Jiang, W.T., Xu, Z.L., Chen, Z., Zhao, X.P.: J. Funct. Mater. 38, 157–160 (2007). in Chinese, available at http://www.cnki.com.cn/Article/CJFDTOTAL-GNCL200701046.htm Google Scholar
  17. 17.
    Xu, S.H., Zhou, Y.W., Zhao, X.P.: Mater. Rev. 21, 162–166 (2007). in Chinese, available at http://www.cnki.com.cn/Article/CJFDTotal-CLDB2007S3048.htm Google Scholar
  18. 18.
    Zhang, Z.W., Tao, S., Chen, G.W., Zhao, X.P.: J. Supercond. Nov. Magn. 29(5), 1159–1162 (2016)CrossRefGoogle Scholar
  19. 19.
    Tao, S., Li, Y.B., Chen, G.W., Zhao, X.P.: J. Supercond. Nov. Magn. 30, 1405–1411 (2016)CrossRefGoogle Scholar
  20. 20.
    Smolyaninov, I.I., Smolyaninova, V.N.: Adv. Condens. Matter Phys. 2014, 479635 (2014)CrossRefGoogle Scholar
  21. 21.
    Smolyaninova, V.N., Yost, B., Zander, K., Osofsky, M.S., Kim, H., Saha, S., Greene, R.L., Smolyaninov, I.I.: Sci. Report. 4, 7321 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Smolyaninova, V.N., Zander, K., Gresock, T., Jensen, C., Prestigiacomo, J.C., Osofsky, M.S., Smolyaninov, I.I.: Sci. Report. 5, 15777 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Smolyaninov, I.I., Smolyaninova, V.N.: Phys. Rev. B. 91, 094501 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Smolyaninova, V.N. et al.: Sci. Report. 6, 34140 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Wang, S.S., Ning, X.S., J, M.S., Li, H., Chu, X.H.: Cryo. & Supercond. 40(8), 1–6 (2012). in Chinese, available at http://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201208002.htm Google Scholar
  26. 26.
    Li, J.S.: Physics Examination and Testing 28, 3 (2010). in Chinese, available at http://www.cnki.com.cn/Article/CJFDTOTAL-WLCS201003006.htm ADSGoogle Scholar
  27. 27.
    Ye, J.T., Inoue, S., Kobayashi, K., Kasahara, Y., Yuan, H.T., Shimotani, H., Iwasa, Y.: Nat. Mater. 9, 125–128 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Ye, J.T., Zhang, Y.J., Akashi, R., Bahramy, M.S., Arita, R., Iwasa, Y.: Science 338(6111), 1193–1196 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Chen, G.W., Li, Y.B., Qi, W.C., Yang, C.S., Zhao, X.P.: J. Mater. Sci.: Mater. Electron. (2017).  https://doi.org/10.1007/s10854-017-8213-7 Google Scholar
  30. 30.
    Qi, W.C., Chen, G.W., Yang, C.S., Luo, C.R., Zhao, X.P.: J. Mater. Sci.: Mater. Electron. 28, 9237–9244 (2017)Google Scholar
  31. 31.
    Cai, Q., Liu, Y.C., Ma, Z.Q., Dong, Z.: J. Supercond. Nov. Magn. 25, 357 (2012)CrossRefGoogle Scholar
  32. 32.
    Igor, I.S., Vera, N.S.: Phys. Rev. B. 93, 184510 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Honggang Chen
    • 1
  • Yongbo Li
    • 1
  • Guowei Chen
    • 1
  • Longxuan Xu
    • 1
  • Xiaopeng Zhao
    • 1
  1. 1.Smart Materials Laboratory, Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations