Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3283–3288 | Cite as

Magnetocaloric Effect in BiFe1−xZnxO3 Multiferroics

  • A. A. Amirov
  • I. I. Makoed
  • Y. A. Chaudhari
  • S. T. Bendre
  • D. M. Yusupov
  • A. Sh. Asvarov
  • N. A. Liedienov
  • A. V. Pashchenko
Original Paper
  • 90 Downloads

Abstract

Ceramic BiFe1−xZnxO3 multiferroic samples were prepared by the solid combustion method for x = 0.1, 0.15, and 0.2. Structural, magnetic, and magnetocaloric properties of the multiferroics have been studied. For all samples, an antiferromagnetic phase transition is observed in the region of 630 K. With increase in x, the reduction in magnitude of magnetization and Neel temperature is observed. The magnetocaloric properties, entropy, relative cooling power, and heat capacity have been calculated within the framework of thermodynamic theory. It has been established that the maximum changes of magnetocaloric properties of multiferroics are observed in the region of magnetic phase transition.

Keywords

Multiferroics Phase transitions Magnetocaloric effect Entropy Relative cooling power Heat capacity 

Notes

Acknowledgements

The authors are grateful to Dr. M. Guseinov (Amirkhanov Institute of Physics Daghestan Scientific Center, Russian Academy of Sciences) and Dr. K. Chichay (Immanuel Kant Baltic Federal University) for the help in measurements.

Funding Information

This work was partially supported by projects “Phase transitions, magnetotransport, magnetocaloric, magnetoelectric phenomena in strongly correlated electron systems” (No. 0203-2016-0009) at the Institute of Physics of Dagestan Scientific Center of Russian Academy of Sciences and 5 top 100 Russian Academic Excellence Project at the Immanuel Kant Baltic Federal University. The work was partially supported by the Ukrainian State Foundation for Basic Research, project F71/46-2017.

References

  1. 1.
    Aizu, K.: Phys. Rev. B. 2, 754 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    Schmid, H.: Ferroelectrics 162, 317 (1994)CrossRefGoogle Scholar
  3. 3.
    Manosa, L., Gonzalez-Alonso, D., Planes, A., Bonnot, E., Barrio, M., Tamarit, J.L., Aksoy, S., Acet, M.: Nat. Mater. 9, 478 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Planes, A., Castan, T., Saxena, A.: Philos. Mag. 94, 1893 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Fahler, S., Robler, U.K., Kastner, O., Eckert, J., Eggeler, G., Emmerich, H., Entel, P., Muller, S., Quandt, E., Albe, K.: Adv. Eng. Mater. 14, 10 (2012)CrossRefGoogle Scholar
  6. 6.
    Flerov, I., Mikhaleva, E., Gorev, M., Kartashev, A.: Phys. Solid State 57, 429 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Kumar, A., Yadav, K.: J. Appl. Phys. 116, 083907 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Lisenkov, S., Mani, B., Chang, C.M., Almand, J., Ponomareva, I.: Phys. Rev. B 87, 224101 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Liu, Y., Infante, I.C., Lou, X., Lupascu, D.C., Dkhil, B.: Appl. Phys. Lett. 104, 012907 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Starkov, A., Starkov, I.: J. Exp. Theor. Phys. 119, 258 (2014)CrossRefGoogle Scholar
  11. 11.
    Starkov, I.A., Starkov, A.S.: Int. J. Solids Struct. 100, 187 (2016)CrossRefGoogle Scholar
  12. 12.
    Teague, J.R., Gerson, R., James, W.J.: Sol. Stat. Commun. 8, 1073 (1970)ADSCrossRefGoogle Scholar
  13. 13.
    Fischer, P., Polomska, M.: J. Phys. C: Sol. Stat. 13, 1931 (1980)ADSCrossRefGoogle Scholar
  14. 14.
    Starkov, I., Starkov, A.: Int. J. Refrig. 37, 249 (2014)CrossRefGoogle Scholar
  15. 15.
    Zheng, G.-P., Sarir, U., Zheng, X., Yang, J.: J. Alloys Compd. 663, 249 (2016)CrossRefGoogle Scholar
  16. 16.
    Chaudhari, Y.A., Singh, A., Abuassaj, E.M., Chatterjee, R., Bendre, S.T.: J. Alloys Compd. 518, 51 (2012)CrossRefGoogle Scholar
  17. 17.
    Amirov, A.A., Kamilov, I.K., Yusupov, D.M., Reznichenko, L.A., Razumovskaya, O.N., Verbenko, I.A.: Phys. Procedia 75, 10 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Kozakov, A.T., Kochur, A.G., Torgashev, V.I., Googlev, K.A., Kubrin, S.P., Trotsenko, V.G., Bush, A.A., Nikolskii, A.V.: J. Alloys Compd. 664, 392 (2016)CrossRefGoogle Scholar
  19. 19.
    Prado-Gonjal, J., Ávila, D., Villafuerte-Castrejón, M.E., González-García, F., Fuentes, L., Gómez, R.W., Pérez-Mazariego, J.L., Marquina, V., Morán, E.: Solid State Sci. 13, 2030 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Hamad, M.A.: Phase Transit. 85, 106 (2012)CrossRefGoogle Scholar
  21. 21.
    M’nassri, R., Cheikhrouhou, A.: J. Supercond. Nov. Magn. 27, 421 (2014)CrossRefGoogle Scholar
  22. 22.
    Franco, V., Conde, A., Kiss, L.F.: J. Appl. Phys. 104, 033903 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Phan, M.H., Yu, S.C.: J. Magn. Magn. Mater. 308, 325 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    Foldeaki, M., Chahine, R., Bose, T.K.: J. Appl. Phys. 77, 3528 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Functionalized Magnetic Materials (FunMagMa) & Institute of Physics Mathematics and Informational TechnologiesImmanuel Kant Baltic Federal UniversityKaliningradRussia
  2. 2.Amirkhanov Institute of Physics Daghestan Scientific CenterRussian Academy of SciencesMakhachkalaRussia
  3. 3.Department of PhysicsBrest State UniversityBrestBelarus
  4. 4.Department of Physics, School of Physical SciencesNorth Maharashtra UniversityJalgaonIndia
  5. 5.Donetsk Institute for Physics and Engineering named after O.O. GalkinNational Academy of Sciences of UkraineKyivUkraine
  6. 6.Donetsk National University of Economy and Trade named after Michael Tugan-BaranovskyKryvyi RihUkraine

Personalised recommendations