Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3277–3282 | Cite as

Magnetic Properties of SiC Monolayer with Different Nonmagnetic Metal Dopants

  • M. Luo
  • Y. H. Shen
Original Paper
  • 69 Downloads

Abstract

Magnetic properties of nonmagnetic metal-doped SiC monolayer are studied by the first-principle methods. Different dopants (Al, Ga, Li, Mg, and Na) and doping sites are considered. Similar as transition metal (TM) atoms, magnetic behavior appears in Li-, Mg-, and Na-doped system. In addition, according to the calculated binding energies, the Mg-doped system is the most stable-formed system among the above three magnetic materials. Hence, we study the ferromagnetic interaction in two Mg-doped SiC monolayer. Interestingly, as the increasing Mg–Mg distance, the interaction between two Mg dopants prefers to a long-range FM coupling, which originates from a p-d exchange-like s-p coupling interaction.

Keywords

2D-SiC Nonmagnetic metal Long-range FM interaction DFT calculations 

Notes

Acknowledgments

We thank the Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University (ECNU).

Funding Information

Our work is supported by the Supercomputer Center of ECNU.

References

  1. 1.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Geim, K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin mos2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805–136807 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Rodin, S., Carvalho, A., Castro Neto, A.H.: Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112, 176801–176803 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Low, T., Rodin, A.S., Carvalho, A., Jiang, Y., Wang, H., Xia, F., Castro Neto, A.H.: Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 90, 075434–074538 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Fei, R., Faghaninia, A., Soklaski, R., Yan, J.A., Lo, C., Yang, L.: Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 14, 6393–6399 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Ramasubramaniam, A., Muniz, A.R.: Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons. Phys. Rev. B 90, 085424–085429 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Narushima, T., Goto, T., Hirai, T., Iguchi, Y.: High-temperature oxidation of silicon carbide and silicon nitride. Mater. Trans. JIM 38, 821–835 (1997)CrossRefGoogle Scholar
  11. 11.
    Zhang, X.H., Han, J.C., Zhou, J.G., Xin, C., Zhang, Z.H., Song, B.: Ferromagnetism in homogeneous (Al, Co)-codoped 4h-silicon carbides. J. Magn. Magn. Mater. 363, 34–42 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Casady, J.B., Johnson, R.W.: Status of silicon carbide (SiC) as a wide-band gap semiconductor for high-temperature applications: a review. Solid-St. Electron 39, 1409–1422 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    Lin, S.S.: Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C. 116, 3951–3955 (2012)CrossRefGoogle Scholar
  14. 14.
    Hsueh, H.C., Guo, G.Y., Louie, S.G.: Excitonic effects in the optical properties of a SiC sheet and nanotubes. Phys. Rev. B 84, 085404–085413 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Eliseeva, N.S., Kuzubov, A.A., Ovchinnikov, S.G., Serzhantova, M.V., Tomilin, F. N., Fedorov, A.S.: Theoretical study of the magnetic properties of ordered vacancies in 2D hexagonal structures: graphene, 2D-SiC, and H-BN. JETP Lett. 95, 555–559 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Bekaroglu, E., Topsakal, M., Cahagirov, S., Ciraci, S.: First-principles study of defects and adatoms in silicon carbide honeycomb structures. Phys. Rev. B 81, 075433–075441 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Alaal, N., Loganathan, V., Medhekar, N., Shukla, A.: First principles many-body calculations of electronic structure and optical properties of SiC nanoribbons. J. Phys. D: Appl. Phys. 49, 105306–105314 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Javan, M.B.: Electronic and magnetic properties of monolayer SiC sheet doped with 3d-transition metals. J. Magn. Magn. Mater. 401, 656–661 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Wu, Y., Zhou, L.P., Du, X.Z., Yang, Y.P.: Near-field radiative heat transfer between two SiC plates with/without coated metal films. J. Nanosci. Nanotechno. 15, 3017–3024 (2015)CrossRefGoogle Scholar
  20. 20.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener: model description of ferromagnetism in zinc-Blende magnetic semiconductors. Science 287, 1019 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    Liu, L., Yu, P.Y., Ma, Z., Mao, S.S.: Ferromagnetism in gan:gd: a density functional theory study. Phys. Rev. Lett. 100, 127203–127206 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Kitchen, D., Richardella, A., Tang, J.M., Flatte, M.E., Yazdani, A.: Atom-by-atom substitution of mn in gaas and visualization of their hole-mediated interactions. Nature 442, 436–439 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsShanghai Second Polytechnic UniversityShanghaiChina
  2. 2.Key Laboratory of Polar Materials and DevicesEast China Normal UniversityShanghaiChina

Personalised recommendations