Spectral, Electrical, Thermoelectrical and Dielectric Properties of (Zn,Zr) Co-doped CuFe 2 O 4

  • O. M. Hemeda
  • A. Tawfik
  • A. M. A. Henaish
  • B. I. Salem
Original Paper
  • 24 Downloads

Abstract

The effects of Zr+ 4 and Zn+ 2 substitution on the electrical, dielectric and spectral properties of non-stoichiometric Cu1−xZn x Zr y Fe2−yO4 + δ and stoichiometric Cu1−xZnx + yZr y Fe2 − 2yO4 ferrites prepared by double sintering ceramic technique have been investigated. IR absorption spectra confirm the formation of spinel structure. On the other hand, IR spectra can give an idea about the change of molecular structure of ferrites system due to the perturbation that occurred in Fe3+–O2− bond by introducing Zn and Zr elements. The phase identification of nonstoichiometric (ns) and stoichiometric (s) samples was confirmed by the presence of endothermic peak from DTA curves at around 936 C in agreement with X-ray diffraction and IR results. The calculated low values of activation energies for conduction are in the range that suggests the conduction is due to thermally activated mobility and the presence of hopping conduction mechanism. Thermoelectric power exhibits positive sign for most s and ns samples. The concentration of charge carrier is constant in the ferromagnetic region. It is also noted that the dielectric constant decreases with increasing Zn and Zr contents. From the above discussion the samples containing Zn and Zr elements have lower ΔBpp values with low energy loss. From the ESR analysis it can be confirmed that the addition of Zn and Zr generally decrease the power loss which is very important in the application for the manufacturing of a material which is used as a core of transformer at the microwave frequencies.

Keywords

CuFe2O4 Substitution IR DTA Electric properties Dielectric properties 

References

  1. 1.
    Sugimoto, M.: J. Am. Ceram. Soc. 82(2), 269–280 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Miclea, C., Tanasoiu, C., Spanulescu, I., Cioangher, M.: Advan. Sci. Technol. 54, 62 (2008)CrossRefGoogle Scholar
  3. 3.
    Murakami, K.: IEEE Trans. Mag., MAG-I, 96 (1965)Google Scholar
  4. 4.
    Tchernev, D.I., Collier, T.E.: IEEE Trans. Mag., MAG-7, 450 (1971)Google Scholar
  5. 5.
    Seki, K., Shida, J., Murakami, K.: IEEE Trans. Mag., MAG4, 969 (1978)Google Scholar
  6. 6.
    Tanasoiu, C., Nicolae, I., Nicolau, P., Niculescu, H.: Romanian Patent No. 76635 (1981)Google Scholar
  7. 7.
    Tanasoiu, C., Nicolae, I., Nicolau, P., Niculescu, H., Mihaiache, C.: J. Phys. E: Sci. Instr. 18, 50 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    Sattar, A.A., El-Sayed, H.M., Agami, W.R., Ghani, A.A.: Am. J. Appl. Sci. 4(2), 89–93 (2007)CrossRefGoogle Scholar
  9. 9.
    Rana, C.P., Baijal, J.S., Kishan, P.: J. Less-Common Metals 165, 257–261 (1983)Google Scholar
  10. 10.
    Verma, V., Pandey, V., Kotnala, R.K., Kishan, V., Kumar, N., Kothari, P.C.: J. Alloys Compd. 443, 178–181 (2007)CrossRefGoogle Scholar
  11. 11.
    Ravinder, D.: J. Appl. Phys. 75, 6121 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    Rezlescu, N., Condurach, D., Petairu, P., Luca, E.: J. Am. Ceram. Soc. 57, 40 (1974)CrossRefGoogle Scholar
  13. 13.
    Kawade, V.B., Bichile, G.K., Jadhav, K.M.: Mater. Lett. 42, 33–37 (2000)CrossRefGoogle Scholar
  14. 14.
    Krausse, J., Haberey, F., Dullenkopf, P.: Z. Angew Phys. 20, 267 (1966)Google Scholar
  15. 15.
    Takatw, M., Tsubone, D., Yanagida, H.: Phy. Abstract 78, 1009 (1975)Google Scholar
  16. 16.
    Smit, J., Wijn, H.P.J.: Less Ferrites Dunod, Paris (1961)Google Scholar
  17. 17.
    Sindhu, S., Ranatharaman, M., Thampi, P.B., Malini, K.A., Kurian, P.: Bull. Mater. Sci. 25/7, 559 (2002)Google Scholar
  18. 18.
    El-Ashry, Sh. F.: M. Sc. thesis, Tanta University, Tanta, 37 (1998)Google Scholar
  19. 19.
    Abd El-Ati, M.I.: Phase Transitions 46, 209 (1994)CrossRefGoogle Scholar
  20. 20.
    El-Sayed, A.M.: Ceram. Int. 28, 651–655 (2002)CrossRefGoogle Scholar
  21. 21.
    Kawade, V.B., Bichile, G.K., Jadhav, K.M.: Mater. Lett. 42, 33–37 (2000)CrossRefGoogle Scholar
  22. 22.
    Hemeda, O.M.: J. Magn. Magn. Mater. 251, 50–60 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Hemeda, O.M., Al-Sharif A., Tawfik, A., Salem B. I., Bououdina, M.: Under publication in JMMMGoogle Scholar
  24. 24.
    He, X., Song, G., Zhu, J.: Mater. Lett. 59, 1941–1944 (2005)CrossRefGoogle Scholar
  25. 25.
    Dwcius, J.C., Maln, O.G., Thomson, A.W.: Proc. R. Soc. A 275, 275–295 (1963)ADSGoogle Scholar
  26. 26.
    Galt, J.K.: Bell Syst. Tech. J. 33, 1023 (1954)CrossRefGoogle Scholar
  27. 27.
    Waldron, R.D.: Phys. Rev. 99, 1727 (1955)ADSCrossRefGoogle Scholar
  28. 28.
    Hafner, S.: Z. Krist 115, 331 (1961)CrossRefGoogle Scholar
  29. 29.
    Hemeda, O.M., Barakat, M.M., Hemeda, D.M.: Turk J Phys. 27, 537 (2003)Google Scholar
  30. 30.
    Kawade, V.B., Bichile, G.K., Jadhav, K.M.: Mater. Lett. 42, 33–37 (2000)CrossRefGoogle Scholar
  31. 31.
    Gorter, E.W.: Philips. Res. Rep. 9, 295 (1954)Google Scholar
  32. 32.
    Verwey, E.J.W.: J. Chem. Phys. 24, 174 (1947)ADSCrossRefGoogle Scholar
  33. 33.
    Gul, I.H., Ahmed, W., Maqsood, A.: J. Magn. Magn. Mater 320, 270 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    Mahmud, S.T., et al.: J. Magn. Magn. Mater 251, 292 (2002)CrossRefGoogle Scholar
  35. 35.
    Smit, J., Wijn, H.P.J.: Less ferrites Dunod, Paris (1961)Google Scholar
  36. 36.
    Rabkin, L.I., Seskin, S.A., Epstein, M.S.: pp 209–212. Ferriti energia, Moscow (1968)Google Scholar
  37. 37.
    Smit, J., Wijn, H.P.: p 157. Wiley, NY (1959)Google Scholar
  38. 38.
    Tanasoiu, C., Nicolae, I., Nicolau, P., Niculescu, H.: Romanian Patent No. 76635 (1981)Google Scholar
  39. 39.
    Miclea, C., Tanasoiu, C.: Rom. J. Phys. 40, 533–440 (1995)Google Scholar
  40. 40.
    Austin, L.G., Mott, N.F.: Adv. Phy. 18, 41 (1969)ADSCrossRefGoogle Scholar
  41. 41.
    Mahajan, R.P., Patankar, K.K., Kothale, M.B., Cchaudhari, S.C., Mathe, V.L., Patil, S.A.: J. Phys. Ind. Acad. Scien. 58(5/6), 1115 (2002)Google Scholar
  42. 42.
    Sarah, P., Suryanarayana, S.V.: Indian J. Phys. 77, 449 (2003)Google Scholar
  43. 43.
    Ravinder, D., Chandrashekar, R.A.: Mater. Lett. 57, 2855–2860 (2003)CrossRefGoogle Scholar
  44. 44.
    Mazen, S.A., Metawe, F., Mansour, S.F.: J. Phys. Appl. Phys. 30, 1799 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    Hench, L.L., West, J.K.: Principles of Electronic Ceramics, p 202. Wiley, New York (1990)Google Scholar
  46. 46.
    Olofa, S.A., Tawfik, A., Barakat, M.M., Mosaad, M.M.: J. Therm. Anal. 37, 2277–2284 (1991)CrossRefGoogle Scholar
  47. 47.
    Qi, X., Zhou, J., Yue, Z., Gui, Z., Li, L., Buddhudu, S.: Adv. Funct. Mater. 9, 920 (2004)CrossRefGoogle Scholar
  48. 48.
    Sparks, M.: J. Appl. Phys. 36, 1570 (1963)ADSCrossRefGoogle Scholar
  49. 49.
    Srivastova, G., Patni, M., Nandikar, N.J.: J. Phys. 38, 267 (1977)Google Scholar
  50. 50.
    Hemeda, O.M.: J. Magn. Magn. Mater. 251, 50–60 (2002)ADSCrossRefGoogle Scholar
  51. 51.
    Blakemore, J.: Solid State Physics, second edn. Cambridge University, Cambridge (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations