Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3201–3208 | Cite as

Insight into Structural, Electronic, Magnetic, Mechanical, and Thermodynamic Properties of Actinide Perovskite BaPuO3

  • Sajad Ahmad Dar
  • Vipul Srivastava
  • Umesh Kumar Sakalle
  • Gitanjali Pagare
Original Paper

Abstract

In this paper, we have performed a systematic investigation on structural, magnetic, electronic, mechanical, and thermodynamic properties of BaPuO3 perovskite within density functional theory (DFT) using generalized gradient approximations (GGA), onsite coulomb repulsion (GGA + U), and modified Becke-Johnson (mBJ). The calculated structural parameters were found in good agreement with the experimental results. A large value of magnetic moment equal to integer value of 4 μB was obtained for the compound. The spin-polarized electronic band structure and density of states present 100% of spin polarization at Fermi level, resulting in half-metallic nature for the compound with spin-up states as metallic and spin- down states as a semiconducting. The elastic and mechanical properties have also been predicted. Moreover, we have calculated thermodynamic properties like Debye temperature (𝜃D), specific heat (CV), entropy (S), etc. using quasi-harmonic Debye model.

Keywords

Electronic properties Magnetic properties Elastic properties Mechanical properties Thermodynamic properties 

Notes

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Henrich, V.: Rep. Prog. Phys. 11, 1481 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    Ali, Z., Ahmad, I., Amin, B., Maqsood, J., Afaq, A., Maqbool, M., Khan, I., Zahid, M.: Opt. Mat. 33, 553 (2011)CrossRefGoogle Scholar
  3. 3.
    Sahli, B., Bouafia, H., Abidri, B., Abdellaoui, A., Hiadsi, S., Akriche, A., Benkhettou, N., Rached, D.: J. Alloys Compd. 635, 163 (2015)CrossRefGoogle Scholar
  4. 4.
    Szytuła, A.: Mater. Sci. Pol. 24, 01 (2006)Google Scholar
  5. 5.
    Duan, C.-G., Sabirianov, R.F., Mei, W.N., Dowben, P.A., Jaswal, S.S., Tsymbal, E.Y.: J. Phys. Condens. Matter 19, 315220 (2007)CrossRefGoogle Scholar
  6. 6.
    Srivastava, V., Sanyal, S.: J. Alloys Comp. 366, 15 (2004)CrossRefGoogle Scholar
  7. 7.
    Singh, D.B., Srivasrava, V., Rajagopalan, M., Husain, M., Bandyopadhyay, A.K.: Phys. Rev. B 64, 115110 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    Ali, Z., Ahmad, I., Reshak, A.H.: Physica B 410, 217 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Lebedev, A.I.: J. Alloys Compd. 580, 487 (2013)CrossRefGoogle Scholar
  10. 10.
    Dar, S.A., Srivastava, V., Sakalle, U.K.: J. Supercond. Nov. Magn. 30, 3055 (2017)CrossRefGoogle Scholar
  11. 11.
    Tanaka, K., Sato, I., Hirosawa, T., Kurosaki, K., Muta, H., Yamanaka, S.: J. Nuc. Sci. Techn. 52, 1285 (2015)CrossRefGoogle Scholar
  12. 12.
    Matsui, T.S.: Thermo. Chimica. Acta 253, 155 (1995)CrossRefGoogle Scholar
  13. 13.
    Nakajime, K., Arai, Y., Suzuki, Y., Yamawaki, M.: J. Mass Spectrom. Soc. 47, 46 (1999)CrossRefGoogle Scholar
  14. 14.
    Russell, L.E., Harrison, J.D.L., Brett, N.H.: J. Nucl. Mater. 2, 310 (1960)ADSCrossRefGoogle Scholar
  15. 15.
    Tanaka, K., Sato, I., Hirosawa, T., Kurosaki, K., Muta, H., Yamanaka, S.: J. Nucl. Mater. 414, 316 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Dar, S.A., Srivastava, V., Sakalle, U.K., Khandy, S.A., Gupta, D.C.: J. Supercond. Nov. Magn. 31, 141 (2018)CrossRefGoogle Scholar
  17. 17.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    Dar, S.A., Srivastava, V., Sakalle, U.K., Parey, V., Pagare, G.: Mater. Res. Express 4, 106104 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Tran, F., Blaha, P.: Phys. Rev. Lett. 102, 226401 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kuasnicke, D., Luitz, J.: Introduction to WIEN2K, an Augmented Plane Wane Plus Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Vienna (2001)Google Scholar
  21. 21.
    Schwarz, K., Blaha, P., Madsen, G.K.H.: Comp. Phys. Commun. 147, 71 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Wu, Z., Cohen, R.E.: Phys. Rev. B 73, 235116 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Petukhov, A.G., Mazin, I.I.: Phys. Rev. B 67, 153106 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Novak, P., Kunes, J., Chaput, L., Pickett, W.E.: Phys. Status Solidi B 243, 563 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Aisimov, V.I., Solovye, I.V., Korotin, M.A., Czyzyk, M.T., Sawatzky, G.A.: Phys. Rev. B 48, 16929 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    Monkhorst, H.J., Pack, J.D.: Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Charpin, T.: A Package for Calculating Elastic Tensors of Cubic Phases Using WIEN: Laboratory of Geometrix F-75252 (Paris, France) (2001)Google Scholar
  28. 28.
    Blanco, M.A., Pendas, A.M., Francisco, E.J.: J. Mol. Struct. THEOCHEM 268, 245 (1996)CrossRefGoogle Scholar
  29. 29.
    de la Roza, O., Abbasi-Perez, D., Luaea, V.: Comput. Phys. Commun. 182, 2232 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    de la Roza, O., Luaea, V.: Phys. Rev. B 84, 184103 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Birch, F.: J. Appl. Phys. 9, 279 (1938)ADSCrossRefGoogle Scholar
  32. 32.
    Verma, A.S., Jindal, V.K.: J. Alloys Comp. 485, 514 (2009)CrossRefGoogle Scholar
  33. 33.
    Verma, A.S., Kumar, A.: J. Alloys Comp. 541, 210 (2012)CrossRefGoogle Scholar
  34. 34.
    Jiang, L.Q., Guo, J.K., Liu, H.B., Zhu, M., Zhou, X., Wu, P., Le, C.H.: J. Phys. Chem. Solids 67, 1531 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    Dar, S.A., Srivastava, V., Sakalle, U.K., Khandy, S.A.: J. Supercond. Nov. Magn. (2017)  https://doi.org/10.1007/s10948-017-4365-1 CrossRefGoogle Scholar
  36. 36.
    Dar, S.A., Srivastava, V., Sakalle, U.K.: J. Electron. Mater. 46, 6870 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    Sinko, G.V., Smirnov, N.: J. Phys. Condens. Matter 14, 6989 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    Hill, R.: Proc: Phy. Soc. Lond. 65, 349 (1952)ADSGoogle Scholar
  39. 39.
    Reuss, A., Angew, Z.: Mater. Phys. 9, 49 (1929)Google Scholar
  40. 40.
    Tvergaard, V., Hirtchinson, J.W.: J. Am. Ceram. Soc. 71, 157 (1988)ADSCrossRefGoogle Scholar
  41. 41.
    Pertifor, D.G.: Mater. Sci. Technol. 8, 345 (1992)CrossRefGoogle Scholar
  42. 42.
    Haines, J., Leger, J.M., Bocquillon, G.: Annu. Rev. Mater. Sci. 31, 1 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    Pugh, S.F.: Philos. Mag. 45, 823 (1954)CrossRefGoogle Scholar
  44. 44.
    Schreiber, E., Anderson, O.L., Soga, N.: Elastic Constants and Measurements. McGraw-Hill, New York (1973)Google Scholar
  45. 45.
    Bencherif, K., Yakoubi, A., Della, N., Abid, O.M., Khachai, H., Ahmad, R., et al.: J. Elec. Mater. 45, 3479 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    Petit, A.T., Dulong, P.L.: Ann. Chim. Phys. 10, 395 (1819)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sajad Ahmad Dar
    • 1
  • Vipul Srivastava
    • 2
  • Umesh Kumar Sakalle
    • 3
  • Gitanjali Pagare
    • 4
  1. 1.Department of PhysicsGovt. Motilal Vigyan MahavidyalyaBhopalIndia
  2. 2.Department of PhysicsNRI Institute of Research and TechnologyBhopalIndia
  3. 3.Department of PhysicsS. N. P. G. CollegeKhandwaIndia
  4. 4.Department of PhysicsGovt. S N Girls P G CollegeBhopalIndia

Personalised recommendations