Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3105–3110 | Cite as

Effects of Rolling Passes on the Transport Properties of 37-Filamentary AgAu-Sheathed Bi-2223 Tapes

  • Xiaobo Ma
  • Shengnan Zhang
  • Zeming Yu
  • Guoqing Liu
  • Huiling Zheng
  • Chengshan Li
  • Jinshan Li
  • Pingxiang Zhang
Original Paper
  • 27 Downloads

Abstract

Thirty-seven-filamentary AgAu-sheathed Bi-2223 tapes were fabricated by a powder-in-tube (PIT) process. And, the round wires (ϕ 1.86 mm) were rolled to 0.35-mm tapes with 12, 7, 5, and 4 rolling passes through flat rolling, respectively. The influences of different rolling passes on the core density, deformation, and transport properties of Bi-2223/AgAu tapes were systematically investigated. It was noticed that after rolling, the Vickers microhardness of the superconducting core and deform homogeneity along both the horizontal and vertical directions on the cross section of seven-pass rolled tape were better than those on the tapes with other passes, which proved the larger core density and uniform deformation with the seven-pass rolling process. Meanwhile for the wires with 12 and 7 passes, the AgAu/superconducting core interfaces were much flatter. With the rolling passes decreasing from 12 to 4, the critical current density (Jc) first increased and then decreased. Due to the better homogeneity and flatter interfaces, Jc reached the maximum value of 17.3 kA/cm2 on the seven-pass sample. Meanwhile, the enhancement of current capacities in magnetic field applied parallel to the Bi-2223/AgAu tape surface could also be recognized as the evidence of improving intergrain connections due to the higher density in seven-pass rolled tapes.

Keywords

Bi-2223/AgAu tapes Rolling passes Superconducting core density Sausaging Critical current density 

Notes

Funding Information

This study was financially supported by the National Key Project of Magneto-Constrained Fusion Energy Development Program under Grant 2015GB115001.

References

  1. 1.
    Nassi, M.: HTS prototype for powder transmission cables: recent result and future programmes. Supercond. Sci. Technol. 13(5), 460–463 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Sato, K., Kato, T., Ohkura, K., Kobayashi, S., Fjuino, K., Ohmatsu, K., Hayashi, K.: Performance of all high-Tc superconducting magnets generating 4T and 7T at 20K. Supercond. Sci. Technol. 13(1), 18–22 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Paul, W., Lakner, M., Rhyner, J., Unternahrer, P., Baumann, T.h., Chen, M., Widenhorn, L., Guerig, A.: Test of 1.2 MVA high-Tc superconducting fault current limiter. Supercond. Sci. Technol. 10(12), 914–918 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Fujishiro, H., Ikebe, M., Noto, K., Matsukawa, M., Sasaoka, T., Nomura, K., Kuma, S.: Low thermal conductive Bi-2223 tapes sheathed with Ag-Au alloys. IEEE Trans. Appl. Supercond. 30(4), 1645–1650 (1994)Google Scholar
  5. 5.
    Grasso, G., Jeremie, A., Flukiger, R.: Optimization of the preparation parameters of monofilamentary (Bi-2223) tapes and the effect of the rolling pressure on Jc. Supercond. Sci. Technol. 8(11), 827–830 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    Tanaka, Y., Matsumoto, F., Maeda, H., Ishizuka, M.: Improved Jc property of Bi2223 tapes made using AgCu alloy-sheath doped with Ti, Zr, Hf or Au. IEEE Trans. Appl. Supercond. 5(2), 1158–1161 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    Aha, J.H., Ha, K.H., Lee, S.Y., Ko, J.W., Kim, H.D., Chung, H.: Alloying effect of Ag sheath on microstructure and superconducting properties of Bi-2223/Ag tape. Japan. J. Appl. Phys. 33(9), L1298–L1300 (1994)Google Scholar
  8. 8.
    Li, Q., Brodersen, K., Hjuler, H.A., Freloft, T.: Critical current density enhancement in Ag-sheathed Bi-2223 superconducting tapes. Physica C 217(3-4), 360–366 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    Haldar, P., Hoehn, J.G. Jr., Rice, J.A., Molowidlo, L.R.: Enhancement in critical current density of BiPbSrCaCuO tapes by thermomechanical processing: cold rolling versus uniaxial pressing. Appl. Phys. Lett. 60(4), 495–497 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    Han, Z., Freltoft, T.: The mechanical deformation process for preparing Ag-sheathed BiSrCaCuO superconducting tapes. Appl. Supercond. 2(3-4), 201–215 (1994)CrossRefGoogle Scholar
  11. 11.
    Zeimetz, B., Pan, A., Dou, S.X.: Effect of deformation of parameters on interface morphology of silver-sheathed high-temperature superconductor tapes. Physica C 250(250), 170–174 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    Grasso, G., Jeremie, A., Flukiger, R.: Optimization of the preparation parameters of monofilamentary Bi(2223) tapes and the effect of the rolling pressure on Jc. Supercond. Sci. Technol. 8(11), 827 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    Wang, W.G., Horvat, J., Liu, H.K., Dou, S.X.: Preparation of Ag - Bi-2223 tape by controlling the phase evolution prior to sintering. Supercond. Sci. Technol. 9(10), 1 (1996)Google Scholar
  14. 14.
    Korzekwa, D.A., Bingert, J.F., Podtburg, E.J., Miles, P.: Deformation processing of wires and tapes using the oxide-powder-in-tube method. Appl. Supercond. 2(3-4), 261–270 (1994)CrossRefGoogle Scholar
  15. 15.
    Dorris, S.E., Prorok, B.C., Lanagan, M.T., Sinha, S., Poeppel, R.B.: Synthesis of highly pure bismuth-2223 by a two-powder process. Physica C 212(1-2), 66–74 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    Dorris, S.E., Prorok, B.C., Lanagan, M.T., Browning, N.B., Hagen, M.R.: Methods of introducing lead into bismuth-2223 and their effects on phase development and superconducting properties. Physica C 223(1-2), 163–172 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    Yoo, J.M., Chung, H.S., Ko, J.W., Kim, H.D., Sha, J.: Fabrication of superconducting joints between PIT processed Bi-2223/Ag tapes by single and multiple press and reaction annealing. Physica C 267(1), 53–58 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    Husek, I., Kovac, P.: Evaluation of core density during the two-axial rolling of BSCCO/ag composite. Supercond. Sci. Technol. 13(13), 385 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    Husek, I., Kovac, P., Pachla, W.: Microhardness profiles in BSCCO/ag composites made by various technological steps. Supercond. Sci. Technol. 8(8), 617 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    Wang, T.F. In: Qi, K.M. (ed.) : Meal Plastic Processing, p 986. Metallurgical Industry Press, Beijing (2012)Google Scholar
  21. 21.
    Han, Z., Hansen, P.S., Freltoft, T.: The mechanical deformation of superconducting BiSrCaCuO/Ag composites. Supercond. Sci. Technol. 10(6), 371 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    Yamada, Y., Sato, M., Murase, S., Kitamura, T., Kamisada, Y. In: Bando, Y., Yameuchi, H. (eds.) : Advances in Superconductivity, p 717. Springer Japan, Tokyo (1993)Google Scholar
  23. 23.
    Parrell, J.A., Dorris, S.E., Larbalestier, D.C.: On the role of Vickers and Knoop microhardness as a guide to developing high critical current density Ag-clad BSCCO-2223 tapes. Physica C 231(1-2), 137–146 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    Feng, Y., High, Y.E., Larbalestier, D.C., Sung, Y.S., Hellstrom, E.E.: Evidence for preferential formation of the (Bi,Pb)2Sr2Ca2Cu3Ox phase at the Ag interface in Ag-sheathed (Bi,Pb)2Sr2Ca2Cu3Ox tapes. Appl. Phys. Lett. 62(13), 1553–1555 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    Flukiger, R., Grasso, G., Hensel, B., Daumling, M. In: Maeda, H., Togano, K. (eds.) : Bismuth-Based High-Temperature Superconductors, p 6. CRC, New York, Dekker (1996)Google Scholar
  26. 26.
    Flukiger, R., Graf, T., Decroux, M., Groth, C., Yamada, Y.: Critical currents in Ag sheathed tapes of the 2223-phase in (Bi,Pb)-Sr-Ca-Cu-O. IEEE Trans. Magn. 27(2), 1258–1263 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    Yamada, Y., Oberst, B., Flukiger, R.: Microstructural study of Bi(2223)/Ag tapes with Jc(77 K, 0 T) values of up to 3.3*104 A cm− 2. Supercond. Sci. Technol. 4(4), 165 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    Wilhelm, M., Heuwuller, H.W., Ries, G.: Fabrication and critical current densities of 2223-BiPbSrCaCuO silver sheated tapes. Physica C 185(185), 2399–2400 (1991)ADSCrossRefGoogle Scholar
  29. 29.
    Grasso, G., Perin, A., Flukiger, R.: Deformation-induced texture in cold-rolled Ag sheathed Bi(2223) tapes. Physica C 250(1-2), 43–49 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    Hensel, B., Grasso, G., Flukiger, R.: Limits to the critical transport current in superconducting (Bi,Pb)2Sr2Ca2Cu3O10 silver-sheathed tapes: the railway-switch model. Phys. Rev. B. 51(21), 15456–15460 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Northwest Institute for Non-Ferrous Metal Research (NIN)Xi’anChina

Personalised recommendations