Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3239–3244 | Cite as

Investigation of New d0 Half-metallic Heusler Alloy LiCsN2 Using First-Principle Calculations

  • Lang Sun
Original Paper
  • 68 Downloads

Abstract

Using the self-consistent full-potential linearized augmented plane wave (FPLAPW) method, we predicated a new d0 half-metallic Heusler compound LiCsN2 with integer total magnetic moment 4.00 μ B per formula unit based on density functional theory (DFT). Our calculation shows that this alloy has a huge half-metallic gap (1.06 eV) and a wide band gap (4.52 eV). We found the LiCsN2 alloy is a robust half-metallic material with respect to the lattice compression. It maintains the half-metallic character until the lattice constant is contracted to 6.10 Å. The Curie temperature of LiCsN2 was estimated to be 6145.4 K within the mean field approximations.

Keywords

d0 Half-metallic character Ferromagnetism Density functional theory Heusler alloy 

References

  1. 1.
    Žutić, I., Fabian, J., Das Sarma, S.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    de Groot, R. A., Mueller, F. M., Engen, P.G.V., Buschow, K.H.J.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024–2027 (1983)ADSCrossRefGoogle Scholar
  3. 3.
    Taşkn, F., Atiş, M., Canko, O., Kervan, S., Kervan, N.: Half-metallicity in the inverse Heusler Ti2RuSn alloy: a first-principles prediction. J. Magn. Magn. Mater. 426, 473–478 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Kervan, S., Kervan, N.: Half-metallic properties of the CrZrZ (Z = In, Sn, Sb, and Te) half-Heusler compounds by ab initio calculations. J. Supercond. Nov. Magn. 30, 657–664 (2017)CrossRefGoogle Scholar
  5. 5.
    Dahmane, F., Mogulkoc, Y., Doumi, B., Tadjer, A., Khenata, R., Bin Omran, S., Rai, D. P., Murtaza, G., Varshney, D.: Structural, electronic and magnetic properties of Fe2-based full Heusler alloys: a first principle study. J. Magn. Magn. Mater. 407, 167–174 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Kervan, S., Kervan, N.: First-principles study on half-metallic properties of the CoMnZ (Z = S, Se, Te) half-Heusler compounds. Intermetallics. 46, 45–50 (2014)CrossRefGoogle Scholar
  7. 7.
    Amrich, O., Amine Monir, M.E., Baltach, H., Omran, S.B., Sun, X.-W., Wang, X., Al-Douri, Y., Bouhemadou, A., Khenata, R.: Half-metallic ferrimagnetic characteristics of Co2YZ (Z = P, As, Sb, and Bi) new full-Heusler alloys: a DFT study. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-10017-14206-10942
  8. 8.
    Yahiaoui, I. E., Lazreg, A., Dridi, Z., Al-Douri, Y., Bouhafs, B.: Electronic and magnetic properties of Co2CrGa1-x Si x Heusler alloys. J. Supercond. Nov. Magn. 30, 421–424 (2016)CrossRefGoogle Scholar
  9. 9.
    Abderrahim, B., Ameri, M., Bensaid, D., Azaz, Y., Doumi, B., Al-Douri, Y., Benzoudji, F.: Half-metallic magnetism of quaternary Heusler compounds Co2Fe x Mn1-x Si(x = 0, 0.5, and 1.0): first-principles calculations. J. Supercond. Nov. Magn. 29, 277–283 (2015)CrossRefGoogle Scholar
  10. 10.
    Missoum, A., Seddik, T., Murtaza, G., Khenata, R., Bouhemadou, A., Al-Douri, Y., Abdiche, A., Meradji, H., Baltache, H.: Ab initio study of the structural and optoelectronic properties of the half-Heusler CoCrZ (Z = Al, Ga). Can. J. Phys. 92, 1105–1112 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Bensaid, D., Hellal, T., Ameri, M., Azzaz, Y., Doumi, B., Al-Douri, Y., Abderrahim, B., Benzoudji, F.: First-principle investigation of structural, electronic and magnetic properties in Mn2RhZ (Z = Si, Ge, and Sn) Heusler alloys. J. Supercond. Nov. Magn. 29, 1843–1850 (2016)CrossRefGoogle Scholar
  12. 12.
    Ameri, M., Touia, A., Khenata, R., Al-Douri, Y., Baltache, H.: Structural and optoelectronic properties of NiTiX and coVX (X = Sb and Sn) half-Heusler compounds: an ab initio study. Optik - International Journal for Light and Electron Optics 124, 570–574 (2013)CrossRefGoogle Scholar
  13. 13.
    Bouzerar, G., Ziman, T.: Model for vacancy-induced d(0) ferromagnetism in oxide compounds. Phys. Rev. Lett. 96, 207602 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Chen, J., Gao, G. Y., Yao, K. L., Song, M. H.: Half-metallic ferromagnetism in the half-Heusler compounds geKCa and snKCa from first-principles calculations. J. Alloy. Compd. 509, 10172–10178 (2011)CrossRefGoogle Scholar
  15. 15.
    Rozale, H., Lakdja, A., Amar, A., Chahed, A., Benhelal, O.: Half-metallic ferromagnetism in the full-Heusler compounds KCax2 (X = C, N, and O). Comp. Mater. Sci. 69, 229–233 (2013)CrossRefGoogle Scholar
  16. 16.
    Umamaheswari, R., Yogeswari, M., Kalpana, G.: Ab-initio investigation of half-metallic ferromagnetism in half-Heusler compounds XYZ (X = Li, Na, K and Rb; Y = Mg, Ca, Sr and Ba; Z = B, Al and Ga). J. Magn. Magn. Mater. 350, 167–173 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Lakdja, A., Rozale, H., Chahed, A., Benhelal, O.: Ferromagnetism in the half-Heusler XCsba compounds from first-principles calculations (X = C, Si, and Ge). J. Alloy. Compd. 564, 8–12 (2013)CrossRefGoogle Scholar
  18. 18.
    Lakdja, A., Rozale, H., Sayede, A., Chahed, A.: Origin of ferromagnetism in the half-Heusler XRbcs compounds (X = N, P and As). J. Magn. Magn. Mater. 354, 235–238 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Rozale, H., Amar, A., Lakdja, A., Moukadem, A., Chahed, A.: Half-metallicity in the half-Heusler RbSrC, RbSrSi and RbSrGe compounds. J. Magn. Magn. Mater. 336, 83–87 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Zhang, L., Wang, X. T., Rozale, H., Lu, J. -W., Wang, L. -Y.: Prediction of d 0 half-metallic properties in CsMgS2 full-Heusler compound from first-principle calculations. J. Supercond. Nov. Magn. 28, 3701–3705 (2015)CrossRefGoogle Scholar
  21. 21.
    Gao, Y. C., Wang, X. T.: First-principle investigation of the d 0 half-metallic properties in full-Heusler compounds csAX2 (A = Mg, Ca, Sr, and Ba; X = N, and O). J. Korean Phys. Soc. 66, 1160–1166 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Madsen, G. K. H., Blaha, P., Schwarz, K., Sjöstedt, E., Nordström, L.: Efficient linearization of the augmented plane-wave method. Phys. Rev. B 64, 195134 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    Sjöstedt, E., Nordström, L., Singh, D. J.: An alternative way of linearizing the augmented plane-wave method. Solid State Commun. 114, 15 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    Gao, G. Y., Hu, L., Yao, K. L., Luo, B., Liu, N.: Large half-metallic gaps in the quaternary Heusler alloys CoFeCrZ (Z = Al, Si, Ga, Ge): A first-principles study. J. Alloy. Compd. 551, 539–543 (2013)CrossRefGoogle Scholar
  25. 25.
    Sato, K., Dederichs, P. H., Katayama-Yoshida, H., Kudrnovsky, J.: Exchange interactions and Curie temperatures in diluted magnetic semiconductor. J. Magn. Magn. Mater. 272, 1983–1984 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Lei, G., Liu, X. -X., Xie, H. -H., Li, L., Gao, Q., Deng, J. -B.: First-principle study of half-metallic ferromagnetism in rocksalt XO (X = Li, K, Rb, Cs). J. Magn. Magn. Mater. 397, 176–180 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Materials ScienceSouth Central University for NationalitiesHubeiChina

Personalised recommendations