Skip to main content
Log in

Electronic and Magnetic Investigations on Fe2NiTe Alloy with High Curie Temperature

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Full-potential local-orbital minimum-basis and spin-polarized relativistic Korringa-Kohn-Rostoker along with Monte Carlo simulations are applied to study the electronic and magnetic properties of Fe2NiTe with Hg2CuTi structure. The analysis of orbital population shows the electrons of 4s, 3d, 4d, and 4p from transition metal and 5s, 5d, and 5p from Te atom participating in bonding. It is demonstrated by the density of states of d-d and p-d hybridizations. Calculations show the magnetic moment is carried mainly by Fe atoms. Accordingly, the exchanges of Fe constituents play a leading role in interactions. By using the calculated Heisenberg exchange coupling parameters, the Curie temperature is estimated to be 761.38 K within mean-field approximation. In order to obtain more accurate value of the Curie temperature, Monte Carlo method is adopted to model the normalized magnetization as functions of the temperature, the obtained 507.93 K value is noticeably higher than the room temperature, which is favorable in realistic spintronics application. Finally, the magnetic moments, exchange interactions, and Curie temperatures in the range of 5.4 to 6.5 Å are calculated; the results implies the Curie temperatures are still above room temperature between given lattice intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gutfleisch, O., Willard, M.A., Brck, E., Chen, C.H., Sankar, S.G., Liu, J.P.: Adv. Mater 23 821 (2011)

    Article  Google Scholar 

  2. Plumer, J.v.E.M., Weller, D.: The Physics of Ultra-High-Density Magnetic Recording, vol. 41. Springer Series in Surface Sciences (2001)

  3. Parkin, S.S.P., Hayashi, M., Thomas, L.: Science 320, 190 (2008)

    Article  ADS  Google Scholar 

  4. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnr, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M: Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  5. Jordan, A., Scholz, R., Wust, P., Fhling, H., Felix, R.: J. Magn. Magn. Mater. 201, 413 (1999)

    Article  ADS  Google Scholar 

  6. Heusler, F.: Verh. Dtsch. Phys. Ges. 5, 219 (1903)

    Google Scholar 

  7. Kandpal, H.C., Fecher, G.H., Felser, C.: J. Phys. D: Appl. Phys 40, 1507 (2007)

    Article  ADS  Google Scholar 

  8. Luo, H.Z., Zhu, Z.Y., Ma, L., Xu, S.F., Zhu, X.X., Jiang, C.B., Xu, H.B., Wu, G.H.: J. Phys. D: Appl. Phys. 41, 055010 (2008)

    Article  ADS  Google Scholar 

  9. Gasi, T., Ksenofontov, V., Kiss, J., Chadov, S., Nayak, A.K., Nicklas, M., Winterlik, J., Schwall, M., Klaer, P., Adler, P., Felser, C.: Phys. Rev. B 87, 064411 (2013)

    Article  ADS  Google Scholar 

  10. Gillessen, M., Dronskowskii, R.: J. Comp. Chem. 30, 1290 (2008)

    Article  Google Scholar 

  11. Kiss, J., Chadov, S., Fecher, G.H., Felser, C.: Phys. Rev. B 87, 224403 (2013)

    Article  ADS  Google Scholar 

  12. Faleev, S.V., Ferrante, Y., Jeong, J., Samant, M.G., Jones, B., Parkin, S.P.: Phys. Rev. Appl. 7, 034022 (2017)

    Article  ADS  Google Scholar 

  13. Zhang, Y.J., Wang, W.H., Zhang, H.G., Liu, E.K., Ma, R.S., Wu, G.H.: Physica B 420, 86 (2013)

    Article  ADS  Google Scholar 

  14. Luo, H.Z., Zhu, Z.Y., Ma, L., Xu, S.F., Liu, H.Y., Qu, J.P., Li, Y.X., Wu, G.H.: J. Phys. D: Appl. Phys. 40, 7121 (2007)

    Article  ADS  Google Scholar 

  15. Gupta, D.C., Bhat, l.H.: Mater. Chem. Phys. 146, 303 (2014)

    Article  Google Scholar 

  16. Yin, M., Chen, S.: Intermetallics 57, 34 (2015)

    Article  Google Scholar 

  17. Popiel, E.S., Zarek, W., Tuszyński, M.: Nukleonika 49, S49 (2004)

    Google Scholar 

  18. Nejadsattari, F., Stadnik, Z.M., Przewoźnik, J., Buschow, K.H.J.: Physica B 477, 113 (2015)

    Article  ADS  Google Scholar 

  19. Chen, B.S., Wang, C., Li, Y.Z., Wang, C.X., Guan, X.Y.: J. Supercond. Nov. Magn 29, 1019 (2016)

    Article  Google Scholar 

  20. Wei, X.P., Zhang, Y.L., Sun, X.W., Song, T., Guo, P., Gao, Y., Zhang, J.L., Zhu, X.F., Deng, J.B.: J. Alloys Compd. 694, 1254 (2017)

    Article  Google Scholar 

  21. Ebert, H., Ködderitzsch, D., Minár, J.: Rep. Prog. Phys. 74, 096501 (2011)

    Article  ADS  Google Scholar 

  22. Vosko, S.H., Wilk, L., Nusair, M.: Can. J. Phys. 58, 1200 (1980)

    Article  ADS  Google Scholar 

  23. Koepernik, K., Eschrig, H.: Phys. Rev. B 59, 1743 (1999)

    Article  ADS  Google Scholar 

  24. Opahle, I., Koepernik, K., Eschrig, H.: Phys. Rev. B 60, 14035 (1999)

    Article  ADS  Google Scholar 

  25. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  26. Murnaghan, F.D.: Finite deformation of an elastic solid. Dover, New York (1967)

    Google Scholar 

  27. Liechtenstein, A.I., Katsnelson, M.I., Antropov, V.P., Gubanov, V.A.: J. Magn. Magn. Mater 67, 65 (1987)

    Article  ADS  Google Scholar 

  28. Şaşioǧlu, E., Sandratskii, L.M., Bruno, P.: J. Phys. Condens. Mater. 17, 995 (2005)

    Article  Google Scholar 

  29. Garanin, D.A.: Phys. Rev. B 5, 3050 (1997)

    Article  ADS  Google Scholar 

  30. Evans, R.F.L., Fan, W.J., Chureemart, P., Ostler, T.A., Ellis, M.O.A., Chantrell, R.W.: J. Phys. Condens. Mater 26, 103202 (2014)

    Article  ADS  Google Scholar 

  31. Evans, R.F.L., Atxitia, U., Chantrell, R.W.: Phys. Rev. B 91, 144425 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Discussions with Markus Meinert from Bielefeld University are greatly acknowledged.

Funding

The project is supported by the Young Scholars Science Foundation of Lanzhou Jiaotong University (No. 2015028). This work is also supported by the National Natural Science Foundation of China (No. 11647151) and the Scientific Research Project of Gansu Province (No. 2016-B029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ping Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, XP., Sun, XW., Song, T. et al. Electronic and Magnetic Investigations on Fe2NiTe Alloy with High Curie Temperature. J Supercond Nov Magn 31, 2797–2803 (2018). https://doi.org/10.1007/s10948-017-4556-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4556-9

Keywords

Navigation