Advertisement

Lifshitz Transitions In Multi-band Hubbard Models for Topological Superconductivity in Complex Quantum Matter

  • Antonio Bianconi
Preface

Abstract

How the macroscopic quantum coherence can resist to the decoherence attacks of high temperature is a major challenge for the science of the twenty-first century. Superstripes 2017 conference held in Ischia on June 2017 has been focused on the new physics of high-T c superconductors made of complex quantum matter. Today, the standard model of high-T c superconductivity which grabs the physics of complex quantum matter is the multi-band Hubbard model where the dome of T c occurs by driving the chemical potential in the proximity of a topological Lifshitz transition. The multi-gap superconductivity in the T c dome is driven by exchange interaction between a first condensate in the BEC-BCS crossover which coexists with second BCS condensates. The proximity to Lifshitz transitions in correlated electronic systems gives the ubiquitous arrested phase separation observed in all high-temperature superconductors. Non-Euclidean filamentary hyperbolic geometry is needed for the space description of superstripe textures produced by the coexistence of short-range CDW puddles, hole-poor SDW puddles, and self-organized dopant-rich puddles. A road map to room-temperature superconductors in particular organic compounds made of superlattices of quantum wires driven by Fano resonances with one of the condensates in the BEC-BCS crossover has been proposed.

Keywords

Lifshitz transition Multi-band Hubbard model Topological superconductivity Superstripes Complex quantum matter 

References

  1. 1.
    Ashkenazi, J., Barnes, S.E., Zuo, F., Vezzoli, G.C., Klein, B.M. (eds.): High-temperature superconductivity: physical properties, microscopic theory, and mechanisms, Proceedings of the workshop held Jan. 3-9, 1991, University of Miami, Coral Gables. Springer, Boston (1991)Google Scholar
  2. 2.
    Bar-Yam, Y., Egami, T., Leon, J.M.-d., Bishop, A.R. (eds.): Proc. of the conference: Lattice effects in high-T c superconductors. Santa Fe, New Mexico, January 13-15, 1992. World Scientific Pub., Singapore (1992)Google Scholar
  3. 3.
    Muller, K.A., Benedek, G. (eds.): Phase separation in cuprate superconductors, Proc. Erice Workshop, Italy 6-12 May 1992. World Scientific Pub., Singapore (1993)Google Scholar
  4. 4.
    Proc. 7th Int. Conf. X-ray absorption fine structure, Kobe, Aug 1992. Jpn. J. Appl. Phys. 32 (Supplement 32-2) (1993). http://iopscience.iop.org/issue/1347-4065/32/S2
  5. 5.
    Sigmund, E., Muller, K.A. (eds.): Phase separation in cuprate superconductors: Proc. of the Second International Workshop on Phase Separation in Cuprate Superconductors September 4–10 1993, Cottbus, Germany. Springer, Berlin (1994)Google Scholar
  6. 6.
    Bianconi, A.: Priority date (7 Dec 1993) Process of increasing the critical temperature tc of a bulk superconductor by making metal heterostructures at the atomic limit. US Patent 6,265, 019 (2001)Google Scholar
  7. 7.
    Bianconi, A.: On the Fermi liquid coupled with a generalized Wigner polaronic CDW giving high Tc superconductivity. Solid State Commun. 91(1), 1–5 (1994).  https://doi.org/10.1016/0038-1098(94)90831-1
  8. 8.
    Mihailovic, D., Muller, K.A., Ruani, G. (eds.): Anharmonic properties of high-Tc cuprates. In: Proc. of the international workshop on anharmonic properties of high-Tc cuprates, Bled, Slovenia September 1-6 1994. World Scientific, Singapore (1995)Google Scholar
  9. 9.
    Kaldis, E., Liarokapis, E., M ller, K.A. (eds.): High-Tc superconductivity 1996: ten years after the discovery. Vol. 343 of NATO ASI Series. Springer, Netherlands (1996)Google Scholar
  10. 10.
    Bianconi, A., Saini, N.L., Lanzara, A., Perali, A., Rossetti, T., Valletta, A.: From a homogeneous C u O 2 plane to a superlattice of quantum stripes. In: [9] pp. 383-403 (1997)Google Scholar
  11. 11.
    Bianconi A., Saini, N.L. (eds.): Stripes and related phenomena proceedings of the International Conference Stripes 98, June 4-7 1998, Rome, Italy. Kluwer Academics, Plenum Publisher (2000). isbn:9780306464195Google Scholar
  12. 12.
    Caprara, S., Sulpizi, M., Bianconi, A., Di Castro, C., Grilli, M.: Single-particle properties of a model for coexisting charge and spin quasicritical fluctuations coupled to electrons. Phys. Rev. B 59(23), 14980–14991 (1999).  https://doi.org/10.1103/physrevb.59.14980
  13. 13.
    Bianconi, A., Bianconi, G., Caprara, S., Di Castro, D., Oyanagi, H., Saini, N.L.: The stripe critical point for cuprates. J. Phys.: Condens. Matter 12(50), 10655–10666 (2000).  https://doi.org/10.1088/0953-8984/12/50/326 ADSGoogle Scholar
  14. 14.
    Bianconi, A.: Superstripes. Int. J. Modern Phys. B 14(29,30 & 31), 3289–3297 (2000).  https://doi.org/10.1142/S0217979200003769 ADSCrossRefGoogle Scholar
  15. 15.
    Saini, N.L., Bianconi, A.: Superstripes by anomalous X-ray diffraction and angle resolved photoemission in BI2212. Int. J. Modern Phys. B 14(29-31), 3649–3655 (2000).  https://doi.org/10.1142/S0217979200004179 ADSCrossRefGoogle Scholar
  16. 16.
    Bianconi, A., Saini, N.L., Agrestini, S., Castro, D.D., Bianconi, G.: The strain quantum critical point for superstripes in the phase diagram of all cuprate perovskites. Int. J. Mod. Phys. B 14(29n31), 3342–3355 (2000).  https://doi.org/10.1142/s0217979200003812 ADSCrossRefGoogle Scholar
  17. 17.
    Di Castro, D., Bianconi, G., Colapietro, M., Pifferi, A., Saini, N.L., Agrestini, S., Bianconi, A.: Evidence for the strain critical point in high tc superconductors. Eur. Phys. J. B 18(4), 617–624 (2000).  https://doi.org/10.1007/s100510070010 ADSCrossRefGoogle Scholar
  18. 18.
    Bianconi, A., Di Castro, D., Bianconi, G., Saini, N.L.: The strain quantum critical point for superstripes. AIP Conf. Proc. 554(1), 124–132 (2001).  https://doi.org/10.1063/1.1363067 ADSCrossRefGoogle Scholar
  19. 19.
    Agrestini, S., Saini, N.L., Bianconi, G., Bianconi, A.: The strain of C u O 2 lattice: the second variable for the phase diagram of cuprate perovskites. J. Phys. A Math. Gen. 36(35), 9133–9142 (2003).  https://doi.org/10.1088/0305-4470/36/35/302 ADSCrossRefGoogle Scholar
  20. 20.
    Bianconi A. (ed.): Symmetry and heterogeneity in high temperature superconductors. Proceedings of the NATO Advanced Study Research. Workshop, Erice, Sicily, Italy October 4 10, 2003. NATO Science Series, vol. 214. Springer, Dordrecht (2006). ISBN:978-1-4020-3987-4Google Scholar
  21. 21.
    Muller, K.A., Bussmann-Holder, A.: Superconductivity in complex systems, in Structure and Bonding Series, vol. 114. Springer, Berlin (2005)CrossRefGoogle Scholar
  22. 22.
    Caivano, R., Fratini, M., Poccia, N., Ricci, A., Puri, A., Ren, Z.-A., Dong, X.-L., Yang, J., Lu, W., Zhao, Z.-X., Barba, L., Bianconi, A.: Feshbach resonance and mesoscopic phase separation near a quantum critical point in multiband FeAs-based superconductors. Supercond. Sci. Technol. 22(1), 014004 (2009).  https://doi.org/10.1088/0953-2048/22/1/014004 ADSCrossRefGoogle Scholar
  23. 23.
    Ricci, A., Poccia, N., Ciasca, G., Fratini, M., Bianconi, A.: The microstrain-doping phase diagram of the iron pnictides: Heterostructures at atomic limit. J. Supercond. Nov. Magn. 22(6), 589–593 (2009).  https://doi.org/10.1007/s10948-009-0473-x CrossRefGoogle Scholar
  24. 24.
    Bianconi, A.: Resonances and complexity: From stripes to superstripes. J. Supercond. Nov. Magn. 24(3), 1117–1121 (2011).  https://doi.org/10.1007/s10948-011-1142-4 CrossRefGoogle Scholar
  25. 25.
    Bianconi, A., Poccia, N.: Superstripes and complexity in High-Temperature superconductors. J. Supercond. Nov. Magn. 25(5), 1403–1412 (2012).  https://doi.org/10.1007/s10948-012-1670-6 CrossRefGoogle Scholar
  26. 26.
    Bianconi, A., Innocenti, D., Campi, G.: Superstripes and superconductivity in complex granular matter. J. Supercond. Nov. Magn. 26(8), 2585–2588 (2013). arXiv:1304.6939 CrossRefGoogle Scholar
  27. 27.
    Bianconi, A.: Superstripes and percolating nanoscale-striped puddles in heterostructures at atomic limit. J. Supercond. Nov. Magn. 27(4), 909–912 (2014).  https://doi.org/10.1007/s10948-014-2516-1 CrossRefGoogle Scholar
  28. 28.
    Bianconi, A.: Superstripes in the low energy physics of complex quantum matter at the mesoscale. J. Supercond. Nov. Magn. 28(4), 1227–1229 (2015). arXiv:1503.02966 CrossRefGoogle Scholar
  29. 29.
    Bianconi, A.: Quantum materials: shape resonances in superstripes. Nat. Phys. 9, 536 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Leggett, A.J., Zhang, S.: The BEC-BCS crossover: some history and some general observations. In: Zwerger, W. (ed.) The BCS-BEC crossover and the unitary Fermi gas, vol. 836. Springer, Berlin (2012),  https://doi.org/10.1007/978-3-642-21978-8_2
  31. 31.
    Bednorz, J.G., Muller, K.A.: Possible high T c superconductivity in the Ba-La-Cu-O system. Zeitschrift f r Physik B Condensed Matter 64(2), 189–193 (1986).  https://doi.org/10.1007/bf01303701 ADSCrossRefGoogle Scholar
  32. 32.
    Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q., Chu, C.W.: Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58(9), 908–910 (1987).  https://doi.org/10.1103/physrevlett.58.908 ADSCrossRefGoogle Scholar
  33. 33.
    Bussmann-Holder, A., Keller, H., Bianconi, A. (eds.): High-Tc copper oxide superconductors and related novel materials, vol. 255. Springer International Publishing, Cham (2017)Google Scholar
  34. 34.
    Chu C.W., Abbamonte, A., et al.: Superstripes. In: Bianconi et al. (eds.) Science Series. Isbn: 9788866830696, vol. 11. Superstripes Press, Rome (2017). http://www.superstripes.net
  35. 35.
    Kresin, V.Z.: On the critical temperature for any strength of the electron-phonon coupling. Phys. Lett. A 122(8), 434–438 (1987).  https://doi.org/10.1016/0375-9601(87)90744-4 ADSCrossRefGoogle Scholar
  36. 36.
    Kresin, V.: Paths to Room-temperature superconductivity. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4382-0
  37. 37.
    Bianconi, A., Jarlborg, T.: Lifshitz transitions and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity. Novel Supercond. Mater. 1, 37 (2015)Google Scholar
  38. 38.
    Bianconi, A., Jarlborg, T.: EPL (Europhysics Letters) 112, 37001 (2015).  https://doi.org/10.1209/0295-5075/112/37001 ADSCrossRefGoogle Scholar
  39. 39.
    Jarlborg, T., Bianconi, A.: Sci. Rep. 6, 24816 (2016).  https://doi.org/10.1038/srep24816 ADSCrossRefGoogle Scholar
  40. 40.
    Bussmann-Holder, A., K hler, J., Simon, A., Whangbo, M.-H., Bianconi, A., Perali, A.: The road map toward room-temperature superconductivity. Manipulating different pairing channels in systems composed of multiple electronic components. Condens. Matter 2(3), 24 (2017).  https://doi.org/10.3390/condmat2030024 CrossRefGoogle Scholar
  41. 41.
    Chakraverty, B.K.: Bipolarons and superconductivity. J. de Physique 42(9), 1351–1356 (1981).  https://doi.org/10.1051/jphys:019810042090135100 CrossRefGoogle Scholar
  42. 42.
    Ogg, R.A.: Bose-Einstein condensation of trapped electron pairs. Phase separation and superconductivity of metal-ammonia solutions. Phys. Rev. 69(5–6), 243–244 (1946).  https://doi.org/10.1103/physrev.69.243 ADSCrossRefGoogle Scholar
  43. 43.
    Pauling, L.: A resonating-valence-bond theory of metals and intermetallic compounds. Proc. R. Soc. A: Mathematical Phys. Eng. Sci. 196(1046), 343–362 (1949).  https://doi.org/10.1098/rspa.1949.0032 CrossRefzbMATHGoogle Scholar
  44. 44.
    Bianconi, A., Congiucastellano, A., Desantis, M., Rudolf, P., Lagarde, P., Flank, A.M., Marcelli, A.: Cu L 2,3 XANES of the high T c superconductor Y B a 2 C u 3 O 7. presented at the Symposium on High T c Superconductivity at the 7th General Conference of the Condensed Matter Division of the European Physical Society, Pisa, Italy, 8 Apr. 1987. http://adsabs.harvard.edu/abs/1987eps..symp.....B (1987)
  45. 45.
    Bianconi, A., CongiuCastellano, A., De Santis, M., Rudolf, P., Lagarde, P., Flank, A. M., Marcelli, A.: L 2,3 XANES of the high T c superconductor Y B a 2 C u 3 O 7 with variable oxygen content. Solid State Commun. 63(11), 1009–1013 (1987).  https://doi.org/10.1016/0038-1098(87)90650-8 ADSCrossRefGoogle Scholar
  46. 46.
    Bianconi, A., Castellano, De Santis, M., Politis, C., Marcelli, A., Mobilio, S., Savoia, A.: Lack of delocalized Cu p states at the Fermi level in the high-T c, superconductor Y B a 2 C u 3 O 7 by XANES spectroscopy. Zeitschrift fur Physik B Condensed Matter 67 (3), 307–312 (1987).  https://doi.org/10.1007/bf01307254 ADSCrossRefGoogle Scholar
  47. 47.
    Bianconi, A., Doniach, S., Lublin, D.: X-ray Ca K edge of calcium adenosine triphosphate system and of simple Ca compunds. Chem. Phys. Lett. 59, 121 (1978).  https://doi.org/10.1016/0009-2614(78)85629-2 ADSCrossRefGoogle Scholar
  48. 48.
    Bianconi, A.: Core excitons and inner well resonances in surface soft x-ray absorption (SSXA) spectra. Surf. Sci. 89(1–3), 41–50 (1979)ADSCrossRefGoogle Scholar
  49. 49.
    Bianconi, A.: Surface x-ray absorption spectroscopy: Surface EXAFS and surface XANES. Appl. Surf. Sci. 6(3–4), 392–418 (1980).  https://doi.org/10.1016/0378-5963(80)90024-0 ADSCrossRefGoogle Scholar
  50. 50.
    Garcia, J., Bianconi, A., Benfatto, M., Natoli, C.R.: Le Journal de Physique Colloques 47, C8–49 (1986).  https://doi.org/10.1051/jphyscol:1986807 CrossRefGoogle Scholar
  51. 51.
    Bianconi, A.: Multiplet splitting of final-state configurations in x-ray-absorption spectrum of metal V O 2: Effect of core-hole-screening, electron correlation, and metal-insulator transition. Phys. Rev. B 26(6), 2741–2747 (1982).  https://doi.org/10.1103/physrevb.26.2741 ADSCrossRefGoogle Scholar
  52. 52.
    Marcelli, A., Bianconi, A., Davoli, I., Stizza, S.: Localization mixing and / or hybridization in intermetallic compounds RP d 3 (R = La, Ce, Pr, Nd, Sm) by XANES. J. Magn. Magn. Mater. 47–48, 206–208 (1985).  https://doi.org/10.1016/0304-8853(85)90395-6 CrossRefGoogle Scholar
  53. 53.
    Davoli, I., Marcelli, A., Bianconi, A., Tomellini, M., Fanfoni, M.: Multielectron configurations in the x-ray-absorption near-edge structure of NiO at the oxygen K threshold. Phys. Rev. B 33(4), 2979–2982 (1986).  https://doi.org/10.1103/physrevb.33.2979 ADSCrossRefGoogle Scholar
  54. 54.
    Bianconi, A., Marcelli, A., Dexpert, H., Karnatak, R., Kotani, A., Jo, T., Petiau, J.: Specific intermediate-valence state of insulating 4f compounds detected by L 3 x-ray absorption. Phys. Rev. B 35(2), 806–812 (1987).  https://doi.org/10.1103/physrevb.35.806 ADSCrossRefGoogle Scholar
  55. 55.
    Kotani, A., Okada, M., Jo, T., Bianconi, A., Marcelli, A., Parlebas: Many body effect in inner shell photoemission and photoabsorption spectra of La compounds. J. Phys. Soc. Japan 56(2), 798–809 (1987).  https://doi.org/10.1143/jpsj.56.798 ADSCrossRefGoogle Scholar
  56. 56.
    Zaanen, J., Sawatzky, G.A., Allen, J.W.: Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55(4), 418–421 (1985).  https://doi.org/10.1103/physrevlett.55.418 ADSCrossRefGoogle Scholar
  57. 57.
    Bianconi, A., Congiu-Castellano, A., De-Santis, M., Delogu, Gargano, Giorgi: Localization of Cu 3d levels in the high T c, superconductor Y B a 2 C u 3 O 7 by Cu 2p x-ray photoelectron spectroscopy. Solid State Commun. 63 (12), 1135–1139 (1987).  https://doi.org/10.1016/0038-1098(87)91063-5 ADSCrossRefGoogle Scholar
  58. 58.
    Fujimori, A., Takayama-Muromachi, E., Uchida, Y.: Electronic structure of superconducting Cu oxides. Solid State Commun. 63(9), 857–860 (1987).  https://doi.org/10.1016/0038-1098(87)90901-x ADSCrossRefGoogle Scholar
  59. 59.
    Bianconi, A., Budnick, J., Flank, A.M., Fontaine, A., Lagarde, P., Marcelli, A., Tolentino, H., Chamberland, B., Michel, C., Raveau, B., Demazeau, G.: Evidence of 3d 9-ligand hole states in the superconductor L a 1.85 S r 0.15 C u O 4 from L 3 x-ray absorption spectroscopy. Phys. Lett. A 127(5), 285–291 (1988).  https://doi.org/10.1016/0375-9601(88)90698-6 ADSCrossRefGoogle Scholar
  60. 60.
    Bianconi, A., Clozza, A., Congiu-Castellano, A., Della-Longa, S., De-Santis, M., Di-Cicco, A., Garg, K., Delogu, P., Gargano, A., Giorgi, R., Lagarde, P., Flank, A.M., Marcelli, A.: Experimental evidence of itinerant Cu(3d 9)-oxygen-hole many body configuration in the high-T c superconductor Y B a 2 C u 3 O 7. (Proc. Special Adriatico Research Conference on High Temperature Superconductors 6-8 Jul 1987. Trieste, Italy). Int. J. Modern Phys. B (IJMPB) 1(3–4), 853–862 (1987) http://www.worldscinet.com/ijmpb/01/0103n04/S0217979287001213.html ADSCrossRefGoogle Scholar
  61. 61.
    Bianconi, A., Clozza, A., Congiu Castellano, A., Della Longa, S., De Santis, M., Di Cicco, A., Garg, K., Delogu, P., Gargano, A., Giorgi, R., Lagarde, P., Flank, A. M., Marcelli, A.: Cu 3d 9-ligand hole configuration in Y B a 2 C u 3 O 7 by x-ray spectroscopies. Le Journal de Physique Colloques 48 (C9), C9-1179 - C9-1184 (1987).  https://doi.org/10.1051/jphyscol:19879212 CrossRefGoogle Scholar
  62. 62.
    Bianconi, A., Kanamori, J., Kotani, A. (eds.): Core-level spectroscopy in condensed systems, Proceedings of the Tenth Taniguchi International Symposium. Kashikojima, Japan (1988)Google Scholar
  63. 63.
    Bednorz, J.G., Muller, K.A.: Perovskite-type oxides - the new approach to high- T c superconductivity. Rev. Modern Phys. 60(3), 585–600 (1988).  https://doi.org/10.1103/revmodphys.60.585 ADSCrossRefGoogle Scholar
  64. 64.
    Emery, V.J.: Theory of high- tc superconductivity in oxides. Phys. Rev. Lett. 58(26), 2794–2797 (1987).  https://doi.org/10.1103/physrevlett.58.2794 ADSCrossRefGoogle Scholar
  65. 65.
    Muller, K.A.: The first five years of high-T c superconductivity. Physica C: Superconductivity 185–189, 3–10 (1991).  https://doi.org/10.1016/0921-4534(91)91942-w CrossRefGoogle Scholar
  66. 66.
    Bianconi, A., Budnick, J., Chamberland, B., Clozza, A., Dartyge, E., Demazeau, G., De Santis, M., Flank, A.M., Fontaine, A., Jegoudez, J., Lagarde, P., Lynds, L.L., Michel, C., Otter, F.A., Tolentino, H., Raveau, B., Revcolevschi, A.: 3d 9 L states induced by doping in L a 1.85 S r 0.15 C u O 4 and in magnetic and non magnetic M 1 B a 2 C u 3 O 7 (M = Gd, Ho and Y). (Proc. International Conference on High Temperature Superconductors and Materials and Mechanisms of Superconductivity, Interlaken, Switzerland, February 28 - March 4 1988). Physica C: Supercond. 153–155, 113–114 (1988).  https://doi.org/10.1016/0921-4534(88)90507-2 CrossRefGoogle Scholar
  67. 67.
    Bianconi, A., De Santis, M., Di Cicco, A., Clozza, A., Congiu Castellano, A., Della Longa, S., Gargano, A., Delogu, P., Dikonimos Makris, T., Giorgi, R., Flank, A.M., Fontaine, A., Lagarde, P., Marcelli, A.: Weight of 3d 9 ligand hole configuration as function of oxygen content in Y B a 2 C u 3 O 6.5 + x by joint L 3 XAS and XPS. (Proc. International Conference on High Temperature Superconductors and Materials and Mechanisms of Superconductivity, Interlaken, Switzerland, February 28 - March 4, 1988). Physica C: Supercond. 153–155, 115–116 (1988).  https://doi.org/10.1016/0921-4534(88)90508-4 CrossRefGoogle Scholar
  68. 68.
    Bianconi, A., Desantis, M., Flank, A., Fontaine, A., Lagarde, P., Marcelli, A., Katayamayoshida, H., Kotani, A.: Determination of the symmetry of the 3d9L states by polarized Cu L3 XAS spectra of single crystal YBa2Cu3 O 6.9. Physica C: Supercond. 153–155, 1760–1761 (1988).  https://doi.org/10.1016/0921-4534(88)90469-8 CrossRefGoogle Scholar
  69. 69.
    Bianconi, A., Marcelli, A. (eds.): High T c superconductors electronic structure. Pergamon Press, Oxford (1989) http://www.worldcat.org/isbn/9780080375427
  70. 70.
    Sarma, D.D., Rao, C.N.R.: Nature of the copper species in superconducting YBa2Cu3O7. Solid State Commun. 65(1), 47–49 (1988).  https://doi.org/10.1016/0038-1098(88)90585-6 ADSCrossRefGoogle Scholar
  71. 71.
    Nucker, N., Fink, J., Fuggle, J.C., Durham, P.J., Temmerman, W.M.: Evidence for holes on oxygen sites in the high-T c, superconductors L a 2−x S r x C u O 4 and Y B a 2 C u 3 O 7−y. Phys. Rev. B 37(10), 5158–5163 (1988).  https://doi.org/10.1103/physrevb.37.5158 ADSCrossRefGoogle Scholar
  72. 72.
    Sarma, D.D., Strebel, O., Simmons, C.T., Neukirch, U., Kaindl, G., Hoppe, R., Mller, H.P.: Electronic structure of high- T c superconductors from soft-x-ray absorption. Phys. Rev. B 37 (16), 9784–9787 (1988).  https://doi.org/10.1103/physrevb.37.9784 ADSCrossRefGoogle Scholar
  73. 73.
    Balzarotti, A., De Crescenzi, M., Motta, N., Patella, F., Sgarlata, A.: Energy loss study of the electronic structure of Y B a 2 C u 3 O 7 high T c superconductor. Solid State Commun. 68(4), 381–386 (1988).  https://doi.org/10.1016/0038-1098(88)90299-2 ADSCrossRefGoogle Scholar
  74. 74.
    Balzarotti, A., De Crescenzi, M., Motta, N., Patella, F., Sgarlata, A.: Valence charge fluctuations in Y B a 2 C u 3 O 7 from core-level spectroscopies. Phys. Rev. B 38(10), 6461–6469 (1988).  https://doi.org/10.1103/physrevb.38.6461 ADSCrossRefGoogle Scholar
  75. 75.
    Fujimori, A.: Character of doped oxygen holes in high-T c Cu oxides. Phys. Rev. B 39 (1), 793–796 (1989).  https://doi.org/10.1103/physrevb.39.793 ADSCrossRefGoogle Scholar
  76. 76.
    de Groot, F.M.F., Grioni, M., Fuggle, J.C., Ghijsen, J., Sawatzky, G.A., Petersen, H.: Oxygen 1s x-ray-absorption edges of transition-metal oxides. Phys. Rev. B 40(8), 5715–5723 (1989).  https://doi.org/10.1103/physrevb.40.5715 ADSCrossRefGoogle Scholar
  77. 77.
    Eskes, H., Tjeng, L.H., Sawatzky, G.A.: Cluster-model calculation of the electronic structure of CuO: A model material for the high-T c superconductors. Phys. Rev. B 41(1), 288–299 (1990).  https://doi.org/10.1103/physrevb.41.288 ADSCrossRefGoogle Scholar
  78. 78.
    Bianconi, A: In high temperature superconductivity. In: Ferdeghini, C., Siri, A. S. (eds.) Proceedings of the Third Italian National Meeting on High Temperature Superconductivity Genova 12-14 Feb 1990. ISBN, 9814611670, 9789814611671. World Scientific Publisher, Singapore (1990)Google Scholar
  79. 79.
    Ronay, M., Santoni, A., Schrott, A.G., Terminello, L.J., Kowalczyk, S.P., Himpsel, F.J.: A new correlation for T c from Cu 2p absorption. Solid State Commun. 77(9), 699–702 (1991).  https://doi.org/10.1016/0038-1098(91)90772-n ADSCrossRefGoogle Scholar
  80. 80.
    Bianconi, A., Della Longa, S., Li, C., Pompa, M., Congiu-Castellano, A., Udron, D., Flank, A.M., Lagarde, P.: Linearly polarized Cu L3-edge x-ray-absorption near-edge structure of B i 2 C a S r 2 C u 2 O 8. Phys. Rev. B 44(18), 10126–10138 (1991).  https://doi.org/10.1103/physrevb.44.10126 ADSCrossRefGoogle Scholar
  81. 81.
    Pompa, M., Li, C., Bianconi, A., Congiu-Castellano, A., della Longa, S., Flank, A.M., Lagarde, P., Udron, D.: Full multiple scattering analysis of linearly polarized Cu L3-edge XANES of L a 2 C u O 4. Physica C: Supercond. 184(1–3), 51–64 (1991).  https://doi.org/10.1016/0921-4534(91)91500-4 ADSCrossRefGoogle Scholar
  82. 82.
    Chen, C.T., Tjeng, L.H., Kwo, J., Kao, H.L., Rudolf, P., Sette, F., Fleming, R.M.: Out-of-plane orbital characters of intrinsic and doped holes in La2?xSrxCuO4. Phys. Rev. Lett. 68(16), 2543–2546 (1992).  https://doi.org/10.1103/physrevlett.68.2543 ADSCrossRefGoogle Scholar
  83. 83.
    Bocquet, A.E., Mizokawa, T., Saitoh, T., Namatame, H., Fujimori, A.: Electronic structure of 3d -transition-metal compounds by analysis of the 2 p core-level photoemission spectra. Phys. Rev. B 46(7), 3771–3784 (1992).  https://doi.org/10.1103/physrevb.46.3771 ADSCrossRefGoogle Scholar
  84. 84.
    van Veenendaal, M.A., Eskes, H., Sawatzky, G.A.: Strong nonlocal contributions to Cu 2p photoelectron spectroscopy. Phys. Rev. B 47(17), 11462–11469 (1993).  https://doi.org/10.1103/physrevb.47.11462 ADSCrossRefGoogle Scholar
  85. 85.
    Pellegrin, E., Nucker, N., Fink, J., Simmons, C.T., Kaindl, G., Bernhard, J., Renk, K.F., Kumm, G., Winzer, K.: Polarized x-ray-absorption study of T l 2 B a 2 C a C u 2 O 8 and T l 2 B a 2 C a 2 C u 3 O 10. Phys. Rev. B 48(14), 10520–10523 (1993).  https://doi.org/10.1103/physrevb.48.10520 ADSCrossRefGoogle Scholar
  86. 86.
    Nucker, N., Pellegrin, E., Schwei, P., Sohmen, E., Fink, J., Molodtsov, S.L., Simmons, C.T., Domke, M., Kaindl, G., Frientrup, W., Chen, C.T., Erb, A., Mller-Vogt, G.: Site specific and doping dependent electronic structure of Y B a 2 C u 3 O x probed by O1s and Cu(2p) x-ray absorption spectroscopy. Synth. Metals 71 (1–3), 1563–1566 (1995).  https://doi.org/10.1016/0379-6779(94)02951-t CrossRefGoogle Scholar
  87. 87.
    Merz, M., Nucker, N., Pellegrin, E., Schweiss, P., Schuppler, S., Kielwein, M., Knupfer, M., Golden, M.S., Fink, J., Chen, C.T., Chakarian, V., Idzerda, Y.U., Erb, A.: X-ray absorption spectroscopy of detwinned P r x Y 1−x B a 2 C u 3 O7 − y single crystals: Electronic structure and hole distribution. Phys. Rev. B 55 (14), 9160 (1997).  https://doi.org/10.1103/physrevb.55.9160 ADSCrossRefGoogle Scholar
  88. 88.
    Ghiringhelli, G., Brookes, N.B., Dallera, C., Tagliaferri, A., Braicovich, L.: Sensitivity to hole doping of Cu L 3 resonant spectroscopies: Inelastic x-ray scattering and photoemission of L a 2−x S r x C u O 4. Phys. Rev. B 76 (8), 085116 (2007).  https://doi.org/10.1103/physrevb.76.085116 ADSCrossRefGoogle Scholar
  89. 89.
    Ugenti, S., Cini, M., Seibold, G., Lorenzana, J., Perfetto, E., Stefanucci, G.: Particle-particle response function as a probe for electronic correlations in the p-d hubbard model. Phys. Rev. B 82(7), 075137 (2010).  https://doi.org/10.1103/physrevb.82.075137 ADSCrossRefGoogle Scholar
  90. 90.
    Chainani, A., Sicot, M., Fagot-Revurat, Y., Vasseur, G., Granet, J., Kierren, B., Moreau, L., Oura, M., Yamamoto, A., Tokura, Y., Malterre, D.: Evidence for weakly correlated oxygen holes in the highest-T c cuprate superconductor H g B a 2 C a 2 C u 3 O 8. Phys. Rev. Lett. 119(5), 057001 (2017).  https://doi.org/10.1103/physrevlett.119.057001 ADSCrossRefGoogle Scholar
  91. 91.
    Valletta, A., Bardelloni, G., Brunelli, M., Lanzara, A., Bianconi, A., Saini, N.L.: T c amplication and pseudogap at a shape resonance in a superlattice of quantum stripes. J. Supercond. 10(4), 383–387 (1997).  https://doi.org/10.1007/bf02765723 ADSCrossRefGoogle Scholar
  92. 92.
    Valletta, A., Bianconi, A., Perali, A., Saini, N.L.: Electronic and superconducting properties of a superlattice of quantum stripes at the atomic limit. Zeitschrift fur Physik B Condensed Matter 104(4), 707–713 (1997).  https://doi.org/10.1007/s002570050513 ADSCrossRefGoogle Scholar
  93. 93.
    Bianconi, A., Valletta, A., Perali, A., Saini, N.L.: Superconductivity of a striped phase at the atomic limit. Physica C: Supercond. 296(3–4), 269–280 (1998).  https://doi.org/10.1016/s0921-4534(97)01825-x ADSCrossRefGoogle Scholar
  94. 94.
    Bianconi, A.: Feshbach shape resonance in multiband superconductivity in heterostructures. J. Supercond. 18(5–6), 625–636 (2005).  https://doi.org/10.1007/s10948-005-0047-5 ADSCrossRefGoogle Scholar
  95. 95.
    Bianconi, A.: Multiband superconductivity in high T c cuprates and diborides. J. Phys. Chem. Solids 67(1–3), 567–570 (2006).  https://doi.org/10.1016/j.jpcs.2005.10.160 ADSCrossRefGoogle Scholar
  96. 96.
    Perali, A., Innocenti, D., Valletta, A., Bianconi, A.: Anomalous isotope effect near a 2.5 Lifshitz transition in a multi-band multi-condensate superconductor made of a superlattice of stripes. Supercond. Sci. Technol. 25 (12), 124002 (2012). arXiv:1209.1528 ADSCrossRefGoogle Scholar
  97. 97.
    Innocenti, D., Poccia, N., Ricci, A., Valletta, A., Caprara, S., Perali, A., Bianconi, A.: Resonant and crossover phenomena in a multiband superconductor: Tuning the chemical potential near a band edge. Phys. Rev. B 82(18), 184528 (2010).  https://doi.org/10.1103/physrevb.82.184528 ADSCrossRefGoogle Scholar
  98. 98.
    Innocenti, D., Caprara, S., Poccia, N., Ricci, A., Valletta, A., Bianconi, A.: Shape resonance for the anisotropic superconducting gaps near a Lifshitz transition: the effect of electron hopping between layers. Supercond. Sci. Technol. 24(1), 015012 (2011).  https://doi.org/10.1088/0953-2048/24/1/015012 ADSCrossRefGoogle Scholar
  99. 99.
    Bianconi, A.: Shape resonances in multi-condensate granular superconductors formed by networks of nanoscale-striped puddles. J. Phys. Conf. Series 449(1), 012002+ (2013).  https://doi.org/10.1088/1742-6596/449/1/012002 CrossRefGoogle Scholar
  100. 100.
    Mazziotti, M.V., Valletta, A., Campi, G., Innocenti, D., Perali, A., Bianconi, A.: Possible Fano resonance for high T c multi-gap superconductivity in p-Terphenyl doped by k at the Lifshitz transition. EPL (Europhysics Letters) 118 (3), 37003 (2017).  https://doi.org/10.1209/0295-5075/118/37003 ADSCrossRefGoogle Scholar
  101. 101.
    Kusmartsev, F.V., Di Castro, D., BIanconi, G., Bianconi, A.: Phys. Lett. A 275, 118 (2000).  https://doi.org/10.1016/s0375-9601(00)00555-7
  102. 102.
    Kugel, K.I., Rakhmanov, A.L., Sboychakov, A.O., Poccia, N., Bianconi, A.: Phys. Rev. B. 78, 165124 (2008).  https://doi.org/10.1103/physrevb.78.165124
  103. 103.
    Kugel, K.I., Rakhmanov, A.L., Sboychakov, A.O., Kusmartsev, F.V., Poccia, N., Bianconi, A.: Supercond. Sci. Technol. 22, 014007 (2009).  https://doi.org/10.1088/0953-2048/22/1/014007 ADSCrossRefGoogle Scholar
  104. 104.
    Bianconi, A., Poccia, N., Sboychakov, A.O., Rakhmanov, A.L., Kugel, K.I.: Supercond. Sci. Technol. 28, 024005 (2015).  https://doi.org/10.1088/0953-2048/28/2/024005 ADSCrossRefGoogle Scholar
  105. 105.
    Jarlborg, T., Bianconi, A.: Electronic structure of H g B a 2 C u O 4 + δ with self-organized interstitial oxygen wires in the Hg spacer planes 2017. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4453-2
  106. 106.
    Tallon, J.L., Talantsev, E.F.: Compressed & H3S, superfluid density and the quest for Room-Temperature superconductivity. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4419-4
  107. 107.
    Palumbo, F.: Collective modes in BCS-like models. J. Supercond. Nov. Magn. (2017)  https://doi.org/10.1007/s10948-017-4420-y
  108. 108.
    Chavez, I., Garca, L.A., Grether, M., de Llano, M., Tolmachev, V.V.: Extended BCS-Bose crossover. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4383-z
  109. 109.
    Yanagisawa, T., Miyazaki, M., Yamaji, K.M.: Crossover-induced spin fluctuation and electron pairing in strongly correlated electrons. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4424-7
  110. 110.
    Brzezicki, W., Cuoco, M., Forte, F., Oles, A.M.: Topological Phases emerging from Spin-Orbital Physics. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4416-7
  111. 111.
    Glodzik, S.G., Ptok, A.: Quantum phase transition induced by magnetic impurity. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4360-6
  112. 112.
    Markiewicz, R.S., Buda, I.G., Mistark, P., Lane, C., Bansil, A.: A new model of pseudogap physics in the cuprates. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4361-5
  113. 113.
    Gor’kov, L., Teitel’baum, G.: On the origin of a small hole pocket in the Fermi surface of underdoped Y B a 2 C u 3 O y. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4367-z
  114. 114.
    Ivanov, A., Ivanov, V., Menushenkov, A., Wilhelm, F., Rogalev, A., Puri, A., Joseph, B., Xu, W., Marcelli, A., Bianconi, A.: Local noncentrosymmetric structure of Bi2Sr2CaCu2O8+y by x-ray magnetic circular dichroism at cu K-Edge XANES. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4418-5
  115. 115.
    Moskvin, A.S., Panov, Y.: Topological structures in a model cuprate. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4352-6
  116. 116.
    Kanazawa, I., Maeda, R.: Quantized massive gauge fields and anomalous angle-resolved photoemission spectra in High-T c cuprates. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4363-3
  117. 117.
    Zhao, H., Mou, Y., Feng, S.: Correlation between charge order and second-neighbor hopping in cuprate superconductors. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4327-7
  118. 118.
    Ptok, A., Cichy, A., Rodrguez, K., Kapcia, K J.: Phase transitions in Quasi-One-dimensional system with unconventional superconductivity. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4366-0
  119. 119.
    Barba, L., Chita, G., Campi, G., Suber, L., Bauer, E., Marcelli, A., Bianconi, A.: Anisotropic thermal expansion of p-Terphenyl: a self-assembled supramolecular array of poly-p-phenyl nanoribbons. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4407-8
  120. 120.
    Alarco, J., Talbot, P., Mackinnon, I.: A complete and accurate description of superconductivity of AlB 2-type structures from phonon dispersion calculations. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4328-6
  121. 121.
    Pudalov, V.M., Gershenson, M.E.: Temperature dependence of renormalized spin susceptibility for interacting 2D electrons in silicon. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4329-5
  122. 122.
    Duan, C., Louca, D.: Fe vacancy order and domain distribution in A x F e 2−y S e 2. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4381-1
  123. 123.
    Ummarino, G.A., Daghero, D., Tortello, M., Gonnelli, R.S.: Superconductivity on the verge of a Pressure-Induced Lifshitz transition in CaF e 2As2: An interpretation within the Eliashberg theory. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4319-7
  124. 124.
    Shylin, S., Ksenofontov, V., Naumov, P., Medvedev, S., Felser, C.: Interplay between superconductivity and magnetism in Cu-Doped FeSe under pressure. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4317-9
  125. 125.
    Toda, Y., Mochizuki, H., Tsuchiya, S., Kurosawa, T., Oda, M., Mertelj, T., Mihailovic, D.: Nonequilibrium quasiparticle dynamics in Bi-Based superconductors measured by modulation photoexcitation spectroscopy. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4325-9
  126. 126.
    Grochala, W.: Silverland: The realm of compounds of divalent silver. And why they are interesting? J. Supercond. Nov. Magn. (2017)  https://doi.org/10.1007/s10948-017-4326-8
  127. 127.
    Moshe, A., Bachar, N., Lerer, S., Lereah, Y., Deutscher, G.: Multi-Level Kondo effect and enhanced critical temperature in nanoscale granular. Al. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4330-z
  128. 128.
    Semenov, A.G., Zaikin, AD.: Voltage noise in a superconducting wire with a constriction. J. Supercond. Nov. Magn. (2017)  https://doi.org/10.1007/s10948-017-4316-x
  129. 129.
    Galaktionov, A., Golubev, D., Zaikin, A.: Intrinsic quantum dissipation in superconducting weak links. J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4318-8
  130. 130.
    Marcelli, A., Coreno, M., Stredansky, M., Xu, W., Zou, C., Fan, L., Chu, W., Wei, S., Cossaro, A., Ricci, A., Bianconi, A., D’Elia, A.: Nanoscale phase separation and lattice complexity in VO2: The metal-insulator transition investigated by XANES via Auger electron yield at the vanadium L2,3-edge and resonant photoemission. Condens. Matter 2(4), 38+ (2017).  https://doi.org/10.3390/condmat2040038 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.RICMASS Rome International Center for Materials Science SuperstripesRomeItaly
  2. 2.CNR-IC, Istituto di CristallografiaRomaItaly
  3. 3.National Research Nuclear University, MEPhIMoscowRussia

Personalised recommendations