Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 8, pp 2655–2660 | Cite as

Facile Synthesis of Spinel Ferrites with Enhanced Magnetic Properties from Two Intractable Metallurgical Resources: Zinc-Bearing Dust and Nickel Laterite Ore

  • Jian-ming Gao
  • Fangqin Cheng
Original Paper

Abstract

Nickel laterite ore and zinc-bearing dust are multi-metal-associated and intractable resources. Comprehensive and cooperative utilization of zinc-bearing dust and nickel laterite ore for the preparation of spinel ferrites with enhanced magnetic properties by a facile process was proposed. The structure and magnetic properties of as-prepared spinel ferrites were characterized by X-ray diffraction (XRD), Raman spectroscopy, and Physical Property Measurement System (PPMS). The effect of mass ratios of zinc-bearing dust to nickel laterite ore, calcination temperature, and Zn substitution content on the as-prepared samples was investigated in detail. A single phase of Zn-substituted spinel ferrites (x= 0.00, 0.10, 0.20, and 0.30) could be obtained when the mass ratios were controlled at 1:0.4, 1:4:1.8, 1:2:1.5, and 1:1:1.2 after being calcined at 900 C for 30 min, respectively. The magnetic property tests present that the as-prepared spinel ferrite exhibits enhanced magnetic properties with the saturation magnetization (Ms) value of 66.8 emu g− 1 and the coercivity (Hc) value of 26 Oe when the mass ratio was controlled at 1:1:1.2. This research could provide an effective way to transfer two intractable resources into soft magnetic materials.

Keywords

Nickel laterite ore Zinc-bearing dust Spinel ferrite Magnetic property Zn substituted 

Notes

Funding Information

The work was financially supported by the National Key R&D Program of China (No. 2017YFB0603102), the Program for Sanjin Scholars of Shanxi Province, the National Natural Science Foundation of China (Nos. 51272025, 50872011, and 51072022), and the National Basic Research Program of China (Nos. 2014CB643401 and 2013AA032003).

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Pileni, M.P.: Magnetic fluids: fabrication, magnetic properties, and organization of nanocrystals. Adv. Funct. Mater. 11, 323–336 (2001)CrossRefGoogle Scholar
  2. 2.
    Lin, K.S., Adhikari, A.K., Tsai, Z.Y., Chen, Y.P., Chien, T.T., Tsai, H.B.: Synthesis and characterization of nickel ferrite nanocatalysts for CO2 decomposition. Catal. Today 174, 88–96 (2011)CrossRefGoogle Scholar
  3. 3.
    Shaabani, A., Hezarkhani, Z., Nejad, M.K.: Cr- and Zn-substituted cobalt ferrite nanoparticles supported on guanidine–modified graphene oxide as efficient and recyclable catalysts. J. Mater. Sci. 52(1), 1–17 (2017)CrossRefGoogle Scholar
  4. 4.
    Martinez-Vargas, S., Martínez, A.I., Hernández-Beteta, E.E., Mijangos-Ricardez, O.F., Vázquez-Hipólito, V., Patiño-Carachure, C., Hernandez-Flores, H., Loṕez-Luna, J.: Arsenic adsorption on cobalt and manganese ferrite nanoparticles. J. Mater. Sci. 52, 6205–6215 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Luadthong, C., Khemthong, P., Nualpaeng, W., Faungnawakij, K.: Copper ferrite spinel oxide catalysts for palm oil methanolysis. Appl. Catal. A-Gen. 525, 68–75 (2016)CrossRefGoogle Scholar
  6. 6.
    Durmus, Z., Durmus, A., Kavas, H.: Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material. J. Mater. Sci. 50(3), 1201–1213 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Ali, R., Mahmood, A., Khan, M.A., Chughtai, A.H., Shahid, M., Shakir, I., Warsi, M.F.: Impacts of Ni–Co substitution on the structural, magnetic and dielectric properties of magnesium nano-ferrites fabricated by micro-emulsion method. J. Alloys Compd. 584, 363–368 (2014)CrossRefGoogle Scholar
  8. 8.
    Oumezzinea, E., Hcinia, S., Baazaouia, M., Hlilb, E.K., Oumezzinea, M.: Structural, magnetic and magnetocaloric properties of Zn0.6−xNixCu0.4Fe2 O 4 ferrite nanoparticles prepared by Pechini sol-gel method. Powder Technol. 278, 189–195 (2015)CrossRefGoogle Scholar
  9. 9.
    Zhang, Z.G., Yao, G.C., Zhang, X., Ma, J.F., Lin, H.: Synthesis and characterization of nickel ferrite nanoparticles via planetary ball milling assisted solid-state reaction. Ceram. Inter. 41(3), 4523–4530 (2015)CrossRefGoogle Scholar
  10. 10.
    Gao, J.M., Zhang, M., Guo, M.: Effect of Ni substitution content on structure and magnetic properties of spinel ferrites synthesized from laterite leaching solutions. Ceram. Inter. 41(10), 15283–15286 (2015)CrossRefGoogle Scholar
  11. 11.
    Sodaee, T., Ghasemi, A., Razavi, R.S.: Controlled growth of large-area arrays of gadolinium-substituted cobalt ferrite nanorods by hydrothermal processing without use of any template. Ceram. Inter. 42(15), 17420–17428 (2016)CrossRefGoogle Scholar
  12. 12.
    Thota, S., Kashyap, S.C., Sharma, S.K., Reddy, V.R.: Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: role of Mn. J. Phys. Chem. Solids 91, 136–144 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Zhu, Z., Pranolo, Y., Zhang, W., Wang, W., Cheng, C.Y.: Precipitation of impurities from synthetic laterite leach solutions. Hydrometallurgy 104, 81–85 (2010)CrossRefGoogle Scholar
  14. 14.
    Wang, K., Li, J., McDonald, R.G., Browner, R.E.: The effect of iron precipitation upon nickel losses from synthetic atmospheric nickel laterite leach solutions: statistical analysis and modelling. Hydrometallurgy 109, 140–152 (2011)CrossRefGoogle Scholar
  15. 15.
    Chang, Y.F., Zhai, X.J., Li, B.C., Fu, Y.: Removal of iron from acidic leach liquor of lateritic nickel ore by goethite precipitate. Hydrometallurgy 101, 84–87 (2010)CrossRefGoogle Scholar
  16. 16.
    Meng, L., Qu, J.K., Guo, Q., Xie, K.Q., Zhang, P.Y., Han, L.X., Zhang, G.Z., Qi, T.: Recovery of Ni, Co, Mn, and Mg from nickel laterite ores using alkaline oxidation and hydrochloric acid leaching. Sep. Purif. Technol. 143, 80–87 (2015)CrossRefGoogle Scholar
  17. 17.
    Gao, J.M., Zhang, M., Guo, M.: Innovative methodology for comprehensive utilization of saprolite laterite ore: recovery of metal-doped nickel ferrite and magnesium hydroxide. Hydrometallurgy 158, 27–34 (2015)CrossRefGoogle Scholar
  18. 18.
    Gao, J.M., Yan, Z.K., Liu, J., Zhang, M., Guo, M.: A novel hydrometallurgical approach to recover valuable metals from laterite ore. Hydrometallurgy 150, 161–166 (2014)CrossRefGoogle Scholar
  19. 19.
    Gao, J.M., Zhang, M., Guo, M.: Direct fabrication and characterization of metal doped magnesium ferrites from treated laterite ores by the solid state reaction method. Ceram. Inter. 41, 8155–8162 (2015)CrossRefGoogle Scholar
  20. 20.
    Džunuzović, A.S., Ilić, N.I., Petrović, M.M.V., Bobić, J.D., Stojadinović, B., Dohčević-Mitrović, Z., et al.: Structure and properties of Ni–Zn ferrite obtained by auto-combustion method. J. Magn. Magn. Mater. 374, 245–251 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Choodamani, C., Rudraswamy, B., Chandrappa, G.T.: Structural, electrical, and magnetic properties of Zn substituted magnesium ferrite. Ceram. Inter. 42(9), 10565–10571 (2016)CrossRefGoogle Scholar
  22. 22.
    Gao, J.M., Yan, Z.K., Liu, J., Zhang, M., Guo, M.: Synthesis, structure and magnetic properties of Zn substituted Ni–Co–Mn–Mg ferrites. Mater. Lett. 141, 122–124 (2015)CrossRefGoogle Scholar
  23. 23.
    Hagni, A.M., Hagni, R.D., Demars, C.: Mineralogical characteristics of electric arc furnace dusts. JOM 43, 28–30 (1991)CrossRefGoogle Scholar
  24. 24.
    Morcali, M.H., Yucel, O., Aydin, A., Derin, B.: Carbothermic reduction of electric arc furnace dust and calcination of waelz oxide by semi-pilot scale rotary furnace. J. Min. Metal. B 48, 173–184 (2012)CrossRefGoogle Scholar
  25. 25.
    Oustadakis, P., Tsakiridis, P.E., Katsiapi, A., Agatzini-Leonardou, S.: Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): Part I: Characterization and leaching by diluted sulphuric acid. J. Hazard. Mater. 179, 1–7 (2010)CrossRefGoogle Scholar
  26. 26.
    Tsakiridis, P.E., Oustadakis, P., Katsiapi, A., Agatzini-Leonardou, S.: Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning. J. Hazard. Mater. 179, 8–14 (2010)CrossRefGoogle Scholar
  27. 27.
    Chen, D., Mei, C.Y., Yao, L.H., Jin, H.M., Qian, G.R., Xu, Z.P.: Flash fixation of heavy metals from two industrial wastes into ferrite by microwave hydrothermal co-treatment. J. Hazard. Mater. 192(3), 1675–1682 (2011)CrossRefGoogle Scholar
  28. 28.
    Lv, L., Bian, X., Zhou, J., Zhu, G., Liu, P., Chen, X., Liu, Q.: Synthesis of NiFe2 O 4 nanocrystalline with various size by hydrothermal method. J. Syn. C Crys. 39, 977–981 (2010)Google Scholar
  29. 29.
    Aakash, R., Das, D., Mukherjee, S.: Choubey Effect of doping of manganese ions on the structural and magnetic properties of nickel ferrite. J. Alloys Compd. 668, 33–39 (2016)CrossRefGoogle Scholar
  30. 30.
    Yan, Z.K., Gao, J.M., Li, Y., Zhang, M., Guo, M.: Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite. RSC Adv. 5, 92778–92787 (2015)CrossRefGoogle Scholar
  31. 31.
    Mohit, K., Gupta, V.R., Gupta, N., Rout, S.K.: Structural and microwave characterization of Ni0.2CoxZn0.8−xFe2 O 4 for antenna applications. Ceram. Inter. 40(1), 1575–1586 (2014)CrossRefGoogle Scholar
  32. 32.
    Praveena, K., Chen, H.W., Liu, H.L., Sadhana, K., Murthy, S.R.: Enhanced magnetic domain relaxation frequency and low power losses in Zn2+ substituted manganese ferrites potential for high frequency applications. J. Magn. Magn. Mater. 420, 129–142 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    Bobade, D.H., Rathod, S.M., Mane, M.L.: Sol–gel auto-combustion synthesis, structural and enhanced magnetic properties of Ni2+ substituted nanocrystalline Mg–Zn spinel ferrite. Physica B: Condens. Matter 407(18), 3700–3704 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Mozaffari, M., Zare, Y.: Enhanced magnetization in Mg–Zn ferrite nanoparticles prepared by mechanochemical processing. J. Supercond. Novel Magn. 28(10), 3157–3162 (2015)CrossRefGoogle Scholar
  35. 35.
    Kavitha, N., Manohar, P.: Magnetic and electrical properties of magnesium-substituted Ni–Zn ferrites. J. Supercond. Novel Magn. 29(8), 2151–2157 (2016)CrossRefGoogle Scholar
  36. 36.
    Owens, F.J.: The physics of magnetism. Physics of Magnetic Nanostructures, pp. 19–34. Wiley, Berlin (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Resources and Environment Engineering, State Environmental Protection Key Laboratory of Efficient Utilization Technology of Coal Waste Resources, Shanxi Collaborative Innovation Center of High Value-Added Utilization of Coal-Related WastesShanxi UniversityTaiyuanPeople’s Republic of China

Personalised recommendations