Structural, Elastic, Thermodynamic, Electronic, and Magnetic Investigations of Full-Heusler Compound Ag2CeAl: FP-LAPW Method
- 67 Downloads
Abstract
Structural, elastic, thermodynamic, electronic, and magnetic properties of the full-Heusler compound Ag2CeAl were determined using generalized gradient approximation with exchange-correlation functional GGA (PBEsol) with spin-orbit coupling (SOC) correction. The elastic modulus and their pressure dependence are calculated. From the elastic parameter behavior, it is inferred that this compound is elastically stable and ductile in nature. Through the quasi-harmonic Debye model, in which the phononic effect is considered the effect of pressure P (0 to 50) and temperature T (0 to 1000) on the lattice constant, the elastic parameters, bulk modulus B, heat capacity and thermal expansion α, internal energy U, entropy S, Debye temperature 𝜃D, Helmholtz free energy A, and Gibbs free energy G are investigated. The thermodynamic properties show that the compound Ag2CeAl is a heavy fermion material. The density of state (DOS), magnetic momentum, and band structure are computed, to investigate the magnetic and metallic characteristics. The calculated polarization of the compound is 77.34%. The obtained results are the first predictions of the physical properties for the rare-earth-based (Ce) full-Heusler Ag2CeAl.
Keywords
Full-Heusler alloys Magnetic properties First-principles calculations Spin-polarized electronic bandsReferences
- 1.Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2K, an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Vienna (2001)Google Scholar
- 2.Wong, K.M., Alay-e-Abbas, S.M., Fang, Y., Shaukat, A., Lei, Y.: J. Appl. Phys. 114, 034901 (2013)ADSCrossRefGoogle Scholar
- 3.Zutic, I., Fabian, J., Sarma, S.D.: Rev. Mod. Phys. 76, 323–410 (2004)ADSCrossRefGoogle Scholar
- 4.Perdew, J.P., Wang, Y.: Phys. Rev. B 45, 13244 (1992)ADSCrossRefGoogle Scholar
- 5.Perdew, J.P., Burke, S., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
- 6.Blanco, M.A., Francisco, E.: Comput. Phys. Commun. 158, 57 (2004)ADSCrossRefGoogle Scholar
- 7.Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Phys. Rev. B 66, 134428 (2002)ADSCrossRefGoogle Scholar
- 8.Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Phys. Rev. B 66, 174429 (2002)ADSCrossRefGoogle Scholar
- 9.Galanakis, I.: J. Phys. Condens. Matter 16, 3089 (2004)ADSCrossRefGoogle Scholar
- 10.Zhang, M., Dai, X., Hu, H., Liu, G., Cui, Y., Liu, Z., Chen, J., Wang, J., Wu, G.: J. Phys. Condens. Matter 15, 7891 (2003)ADSCrossRefGoogle Scholar
- 11.Zhang, M., Liu, Z., Hu, H., Liu, G., Cui, Y., Wu, G., Brück, E., de Boer, F.R., Li, Y.: J. Appl. Phys. 95, 7219 (2004)ADSCrossRefGoogle Scholar
- 12.Birch, F.: Phys. Rev. 71, 809–24 (1947)ADSCrossRefGoogle Scholar
- 13.Mehl, M.J., Klein, B.K., Papaconstantopoulos, D.A.: Intermetallic Compounds: Principle and Practice. In: Westbrook, J.H., Fleischeir, R.L. (eds.) Principles, vol. I. Wiley (1995)Google Scholar
- 14.Jong, J.-Y., et al.: J. Alloys Compd. 693, 462e467 (2017)CrossRefGoogle Scholar
- 15.Lantri, T., Bentata, S., Bouadjemi, B.: J. Magn. Magn. Mater. 419, 74–83 (2016)ADSCrossRefGoogle Scholar
- 16.Akriche, A., Bouafia, H.: J. Magn. Magn. Mater. 422, 13–19 (2017)ADSCrossRefGoogle Scholar
- 17.Abada, A., Amara, K.: J. Magn. Magn. Mater. 388, 59–67 (2015)ADSCrossRefGoogle Scholar
- 18.Hu, W., Zou, L.: J. Alloys Compd. 612, 356–360 (2014)Google Scholar
- 19.Voigt, W.: Lehrbush Der Kristallphysik. Taubner, Leipzig (1928)Google Scholar
- 20.Schreiber, E., Anderson, O.L., Soga, N.: Elastic Constants and Their Measurements. Mcgraw-hill, New York (1973)Google Scholar
- 21.Born, M.: Proc. Cambridge Philos. Soc. 36, 160 (1940)ADSMathSciNetCrossRefGoogle Scholar
- 22.Born, M., Huang, k.: Oxford university press (1956)Google Scholar
- 23.Tvergaard, V., Hutchinson, J.W.: J. Am. Ceram., Soc. 71, 157.3 (1988)CrossRefGoogle Scholar
- 24.Pugh, S.F.: Philos. Mag. 45, 823 (1954)CrossRefGoogle Scholar
- 25.Wachter, P., Filzmoser, M., Rebiant, J.: Physica B 293, 199 (2001)ADSCrossRefGoogle Scholar
- 26.Voigt, W.: Semiconductors and Semimetals. Lehrbuch der Kristall-physik. Leipzing, Taubner (1929)Google Scholar
- 27.Schreiber, E., Anderson, O.L., Soga, N.: Elastic Constants and Their Measurements. Mc Graw-Hill, New York (1973)Google Scholar
- 28.Peng, F., Fu, H.Z., Cheng, X.L.: Physica B 400, 83 (2007)ADSCrossRefGoogle Scholar
- 29.Peng, F., Fu, H.Z., Yang, X.D.: Solid State Commun. 145, 91 (2008)ADSCrossRefGoogle Scholar
- 30.Peng, F., Fu, H.Z., Yang, X.D.: Physica B 403, 2851 (2008)ADSCrossRefGoogle Scholar
- 31.Ameri, M., Abdelmounaim, B., Sebane, M., Khenata, R., Varshney, D., Bouhafs, B., Ameri, I.: Mol. Simul. 40(15), 1236–1243 (2013)CrossRefGoogle Scholar
- 32.Ameri, M., Slamani, A., Abidri, B., Ameri, I., al-douri, Y., Bouhafs, B., Varshney, D., Adjadj, A., Louahala, N.: Mater. Sci. Semicond. Process. 27, 379 (2014)CrossRefGoogle Scholar
- 33.Fine, M.E., Brown, L.D., Marcus, H.L.: Scr. Metall. 18, 951 (1984)CrossRefGoogle Scholar
- 34.Galanakis, I., Mavropoulos, P.h., Dederichs, P.H.: J. Phys. D. Appl. Phys. 39, 765 (2006)ADSCrossRefGoogle Scholar