Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 8, pp 2629–2636 | Cite as

The Electronic and Magnetic Properties of Tetragonal Ultrathin BaTiO3 Nanotube

  • Huaping Jia
  • Yongjia Zhang
  • Ninggui Ma
  • Ensi Cao
  • Jifan Hu
Original Paper
  • 125 Downloads

Abstract

The unique structural, electronic and magnetic properties of intrinsic defect in tetragonal ultrathin BaTiO3 nanotube (u-BTONT) have been investigated by first-principle calculations. The zigzag (9,0) u-BTONTs with two different terminations (TiO2 and BaO) can be formed by rolling up one monolayer BTO along a certain crystallographic axis, and the BaO-terminated NT is more stable than TiO2 terminated due to its lower binding energy. The oxygen vacancies on the tube are more stable than cation vacancies, and their magnetic coupling is related not only to the kinds of oxygen vacancies but also to the distance of vacancies. Moreover, both Ba and Ti vacancies also can introduce the ferromagnetism in u-BTONT, which is different from the origin of magnetism in BTO bulk and (001) surface. It is indicated that one-dimensional structure with high surface area can make it easier to form more useful vacancies which prefer ferromagnetism. Our work offers a possible route to fabricate the multiferroic materials.

Keywords

BaTiO3 nanotube Ferromagnetism First-principles calculations Intrinsic defects 

Notes

Funding Information

This work was supported by the National Natural Science Foundation of China (Grant No. 11604234, 11404236, and 50872069), Special Funds of the National Natural Science Foundation of China (Grant No. 11447189), Natural Science Foundation of Shanxi (Grant Nos. 2015021026 and 201601D202010), and Youth Foundation of Taiyuan University of Technology (Grant No. 2015QN065).

References

  1. 1.
    Fiebig, M.: Revival of the magnetoelectric effect. Cheminform 36, R123–R152 (2005)CrossRefGoogle Scholar
  2. 2.
    Spaldin, N.A., Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)CrossRefGoogle Scholar
  3. 3.
    Rani, A., Kolte, J., Vadla, Gopalan, P.: Structural, electrical, magnetic and magneto- electric properties of Fe doped BaTiO3. Ceram. Int. 42, 8010–8016 (2016)CrossRefGoogle Scholar
  4. 4.
    Rani, A., Kolte, J., Gopalan, P.: Phase formation, microstructure, electrical and magnetic properties of Mn substituted barium titanate. Ceram. Int. 41, 14057–14063 (2015)CrossRefGoogle Scholar
  5. 5.
    Park, J.H., Kim, M.G., Jang, H.M., Ryu, S., Kim, Y.M.: Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett. 84, 1338–1340 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Zhou, S., Potzger, K., von Borany, J., Grötzschel, R., Skorupa, W., Helm, M., Fassbender, J.: Crystallographically oriented Co and Ni nanocrystals inside ZnO formed by ion implantation and postannealing. Phys. Rev. B 77, 035209 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Kaspar, T.C., Droubay, T., Heald, S.M., Engelhard, M.H., Nachimuthu, P., Chambers, S.A.: Hidden ferromagnetic secondary phases in cobalt-doped ZnO epitaxial thin films. Phys. Rev. B 77, 998–1002 (2008)CrossRefGoogle Scholar
  8. 8.
    Hong, N.H., Sakai, J., Huong, N.T., Poirot, N., Ruyter, A.: Role of defects in tuning ferromagnetism in diluted magnetic oxide thin films. Phys. Rev. B 72, 045336 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Coey, J.M.D., Venkatesan, M., Stamenov, P., Fitzgerald, C.B., Dorneles, L.S.: Magnetism in hafnium dioxide. Phys. Rev. B 72, 024450 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Hong, N.H., Sakai, J., Ruyter, A., Brize, V.: Does Mn doping play any key role in tailoring the ferromagnetic ordering of TiO2 thin films. Appl. Phys. Lett. 89, 252504 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Rahman, G., García-Suárez, V.M., Hong, S.C.: Vacancy-induced magnetism in SnO2: a density functional study. Phys. Rev. B 78, 184404 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Hu, J.F., Zhang, Z.L., Zhao, M., Qin, H.W., Jiang, M.H.: Room-temperature ferromagnetism in MgO nanocrystalline powders. Appl. Phys. Lett. 93, 192503 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Beltrán, J. I., Monty, C., Balcells, L., Martínez-boubeta, C.: Possible d0 ferromagnetism in MgO. Solid State Commun. 149, 1654–1657 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Kumar, N., Sanyal, D., Sundaresan, A.: Defect induced ferromagnetism in MgO nanoparticles studied by optical and positron annihilation spectroscopy. Chem. Phys. Lett. 477, 360–364 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Gao, F., Hu, J.F., Yang, C.L., Zheng, Y.J., Qin, H.W., Sun, L., Kong, X.W., Jiang, M.H.: First-principles study of magnetism driven by intrinsic defects in MgO. Solid State Commun. 149, 855–858 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Sun, L., Hu, J., Gao, F., Kong, X., Qin, H., Jiang, M.: Room-temperature ferromagnetism and ferroelectricity of nanocrystalline La2Ti2 O 7. J. Alloy. Compd. 502, 176–179 (2010)CrossRefGoogle Scholar
  17. 17.
    Zhang, Z.L., Hu, J.F., Xu, Z.J., Qin, H.W., Sun, L., Gao, F., Zhang, Y.J., Jiang, M.H.: Room-temperature ferromagnetism and ferroelectricity in nanocrystalline PbTiO3. Solid State Sci. 13, 1391–1395 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Ju, L., Hu, J.F., Sun, L., Zhao, M.L., Zhang, Y.J., Qin, H.W., Mei, L.M.: Magnetoelectric coupling in nanocrystalline Pb0.82La0.18TiO3. Appl. Phys. Lett 101, 022901–5 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Cao, E.S., Hu, J.F., Qin, H.W., Ji, F., Zhao, M.L., Jiang, M.H.: Room temperature ferromagnetism and magnetoelectric coupling in (K0.5Na0.5)NbO3 PLD nanocrystalline films. J. Alloy. Compd. 509, 2914–2918 (2011)CrossRefGoogle Scholar
  20. 20.
    Zhang, Y.J., Hu, J.F., Gao, F., Liu, H., Qin, H.W.: Ab initio calculation for vacancy-induced magnetism in ferroelectric Na0.5Bi0.5TiO3. Comput. Theor. Chem. 967, 284–288 (2011)CrossRefGoogle Scholar
  21. 21.
    Zhang, Y.J., Hu, J.F., Cao, E.S., Sun, L., Qin, H.W.: Vacancy induced magnetism in SrTiO3. J. Magn. Magn. Mater 324, 1770–1775 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Li, S., Zhang, Y.J., Ju, L., Shi, C.M., Qin, H.W., Hu, J.F.: Cation Vacancy-Induced Ferromagnetism in Nanocrystalline CaTiO3 Plate. IEEE T. Magn. 50, 1–4 (2014)ADSGoogle Scholar
  23. 23.
    Vijatović, M. M., Bobić, J. D., Stojanović, B. D.: History and challenges of barium titanate: Part I. Sci. Sinter. 40, 155–165 (2008)CrossRefGoogle Scholar
  24. 24.
    Pradhan, S., Roy, G.S.: Study the crystal structure and phase transition of BaTiO3 a perovskite. Researcher 5, 63–67 (2013)Google Scholar
  25. 25.
    Yamamoto, T., Niori, H., Moriwake, H.: Particle-size dependence of crystal structure of BaTiO3 powder. Jpn. J. Appl. Phys. 39, 5683–5686 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    Ishii, M., Ohta, D., Uehara, M., Kimishima, Y.: Vacancy induced ferromagnetism in nano-BaTiO3. Procedia Engineering 36, 578–582 (2012)CrossRefGoogle Scholar
  27. 27.
    Yang, F., Jin, K.J., Lu, H.B., He, M., Wang, C., Wen, J., Yang, G.Z.: Oxygen vacancy induced magnetism in BaTiO3−δ and Nb:BaTiO3−δ thin films. Sci. China Phys. Mech. 53, 852–855 (2010)CrossRefGoogle Scholar
  28. 28.
    Cao, D., Cai, M.Q., Zheng, Y., Hu, W.Y.: First-principles study for vacancy-induced magnetism in nonmagnetic ferroelectric BaTiO3. Phys. Chem. Chem. Phys. 11, 10934–10938 (2009)CrossRefGoogle Scholar
  29. 29.
    Cao, D., Cai, M.Q., Hu, W.Y., Yu, P., Huang, H.T.: Vacancy-induced magnetism in BaTiO3 (001) thin films based on density functional theory. Phys. Chem. Chem. Phys. 13, 4738–45 (2011)CrossRefGoogle Scholar
  30. 30.
    Zhu, N., Wang, L.J., Deng, X.Y.: Preparation and ferroelectric properties of BaTiO3 nanotubes. Key Eng. Mater. 655, 159–163 (2015)CrossRefGoogle Scholar
  31. 31.
    Wang, L.M., Deng, X.Y., Li, J.B., Liao, X.X., Zhang, G.Q., Wang, C.P., Su, K.F.: Hydrothermal synthesis of tetragonal BaTiO3 nanotube arrays with high dielectric performance. J. Nanosci. Nanotechno. 14, 4224–4228 (2014)CrossRefGoogle Scholar
  32. 32.
    Kresse, G., Joubert, J.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    Blöchl, P. E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  34. 34.
    Calzado, C.J., Hernández, N. C., Sanz, J.F.: Effect of on-site Coulomb repulsion term U on the band-gap states of the reduced rutile (110) TiO2 surface. Phys. Rev. B 77, 045118 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    Im, B., Joshi, U.A., Lee, K.H., Lee, J.S.: Growth of single crystalline barium titanate nanowires from TiO2 seeds deposited on conducting glass. Nanotechnology 21, 425601 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    Spanier, J.E., Kolpak, A.M., Urban, J.J., Grinberg, I., Ouyang, L., Yun, W.S., Rappe, A.M., Park, H.: Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. Nano Lett. 6, 735 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    Saito, R., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992)ADSCrossRefGoogle Scholar
  38. 38.
    Evarestov, R.A., Bandura, A.V., Kuruch, D.D.: BaTiO3-based nanolayers and nanotubes: first-principles calculations. J. Comput. Chem. 34, 175–186 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Huaping Jia
    • 1
  • Yongjia Zhang
    • 1
  • Ninggui Ma
    • 1
  • Ensi Cao
    • 1
  • Jifan Hu
    • 2
  1. 1.Key Lab. of Advanced Transducers and Intelligent Control System, Ministry of Education, College of Physics and OptoelectronicsTaiyuan University of TechnologyTaiyuanPeople’s Republic of China
  2. 2.School of Physics, State Key Lab. for Crystal MaterialsShandong UniversityJinanPeople’s Republic of China

Personalised recommendations