Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 8, pp 2559–2565 | Cite as

Possible Origin of Ferromagnetism in Transition Metal Doped Zirconia

  • X. Zhao
  • M. WangEmail author
  • T. Wei
  • J. Ren
  • B. Wang
  • Y. Han
  • Z. Zhao
Original Paper


We have studied the electronic structure and magnetic properties of cubic zirconia (c-ZrO2) with cobalt (Co) or nickel (Ni) doping using density functional theory (DFT) calculations. The pure c-ZrO2 is a nonmagnetic insulator with a wide bandgap. The calculated results reveal that isolated Co or Ni atom can both produce the local magnetic moment in c-ZrO2. And the isolated Co atom can introduce a magnetic moment of about 0.98 μ B, while the Ni atom is 2.85 μ B. The impurity peaks can be formed in the bandgap. Our studies show that the magnetic moments mainly result from d orbitals of the impurity atoms. And the spin-up electrons will be arranged in t 2g orbitals under the ligand field of O h group in Co- or Ni-doped c-ZrO2. Obviously, this will lead to a high-spin state (S =  1/2 or 1). The studies of magnetic coupling reveal that the two Co atoms in c-ZrO2 are not always coupled ferromagnetically at different distances. And the system will be in a spin singlet state (S =  0) when the distance is 6.209 or 7.170 Å between two Co atoms. However, the two Ni atoms in c-ZrO2 are always coupled ferromagnetically at all distances. So we can conclude that the Ni-doped c-ZrO2 is more suitable for spintronic material than Co doping. These results are significant for spintronics.


ZrO2 Magnetism Transition-metal doped Spintronics First principle 


Funding Information

This work was supported by the Science and Technology Research Project of Hebei Higher Education, China (Grant No. ZD2016042), the Natural Science Foundation of Hebei, China (Grant No. F2017208031), Innovative Training Program for College Students (Grant No. 201710082036), and the Natural Science Foundation of Nation, China (Grant No. 51674096).


  1. 1.
    Li, X., Wu, X.: Two-dimensional monolayer designs for spintronics applications. WIREs Comput. Mol. Sci. 6(4), 441–455 (2016)CrossRefGoogle Scholar
  2. 2.
    žutić, I., Fabian, J., Sarma, S.D.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76 (2), 323–410 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Wadley, P., Howells, B., Z̆elezný, J., Andrews, C., Hills, V., Campion, R.P., Nová, k, V., Olejník, K.: Electrical switching of an antiferromagnet. Science 351(6273), 587–590 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Wang, M., Tang, S., Ren, J., Wang, B., Han, Y., Dai, Y.: Magnetism in boron nitride monolayer induced by cobalt or nickel doping. J. Supercond. Nov. Magn. (4) 1–7 (2017)Google Scholar
  5. 5.
    Seema, K., Kumar, R.: Effect of dopant concentration on electronic and magnetic properties of transition metal-doped ZrO2. J. Supercond. Nov. Magn. 28(9), 2735–2742 (2015)CrossRefGoogle Scholar
  6. 6.
    Hong, N., Kanoun, M., Goumri-Said, S., Song, J.-H., Chikoidze, E., Dumont, Y., Ruyter, A., Kurisu, M.: The origin of magnetism in transition metal-doped ZrO2 thin films: experiment and theory. J. Phys.: Condens. Matter. 25(436003), 1–7 (2013)Google Scholar
  7. 7.
    Woodley, S.W., Hamad, S., Mejías, J.A., Catlow, C.R.A.: Properties of small TiO2, ZrO2 and HfO2 nanoparticles. J. Mater. Chem. 16(20), 1927–1933 (2006)CrossRefGoogle Scholar
  8. 8.
    Jonsson, A.K., Niklasson, G.A., Veszelei, M.: Electrical properties of ZrO2 thin films. Thin. Solid. Films 402(1–2), 242–247 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Takahashi, N., Suda, A., Hachisuka, I., Sugiura, M., Sobukawa, H., Shinjoh, H.: Sulfur durability of NOx storage and reduction catalyst with supports of TiO2, ZrO2 and ZrO2-TiO2 mixed oxides. Appl. Catal. B 72(1–2), 187–195 (2007)CrossRefGoogle Scholar
  10. 10.
    Guan, H., Gong, X., Liu, R., Yang, L.: Preparation of stable nanosized ZrO2 particles with different crystallographic structures. Chin. J. Mater. Res. 28(2), 139–143 (2014)Google Scholar
  11. 11.
    Block, S., Jornada, J.A.H., Piermarini, G.J.: Pressure-temperature phase diagram of zirconia. J. Am. Ceram. Soc. 68(9), 497–499 (1985)CrossRefGoogle Scholar
  12. 12.
    Khan, M.S., Islam, M.S., Bates, D.: Cation doping and oxygen diffusion in zirconia: a combined atomistic simulation and molecular dynamics study. J. Med. Chem. 8(10), 2299–2307 (1998)Google Scholar
  13. 13.
    Archer, T., Pemmaraju, C., Sanvito, S.: Magnetic properties of ZrO2-diluted magnetic semiconductors. J. Magn. Magn. Mater. 316(2), e188–e190 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Jo, Y., Hwang, I.R., Park, B.H., Lee, K.J., Lee, S.I., Jung, M.H.: Magnetic phase coupled to an electric memory state in d 0 oxide ZrO2 films. Appl. Phys. Lett. 95(263504), 1–3 (2009)Google Scholar
  15. 15.
    Souza, A., Ivashita, F., Biondo, V., Paesano, A, Mosca, D.: Structural and magnetic properties of iron doped ZrO2. J. Alloys. Compd. 680, 701–710 (2016)CrossRefGoogle Scholar
  16. 16.
    Dong, S., Zhang, Y., Zhang, X., Xu, X., Mao, J., Li, D., Chen, Z., Ma, K., Fan, Z., Wei, D., Yang, Z.: The first-principles study on the interaction of Ni with the yttria-stabilized zirconia and the activity of the interface. Acta. Phys. Sin. 65(068201), 1–8 (2016)Google Scholar
  17. 17.
    Perdew, J., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter. 54(16), 11169–11186 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter. 59(3), 1758–1775 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    Liu, Q., Liu, Z., Feng, L.: Elasticity, electronic structure, chemical bonding and optical properties of monoclinic ZrO2 from first-principles. Physica B: Phys. Condensed Matter. 406(3), 345–350 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Huang, H., Pan, Y., Yu, C., Yang, J., Wang, H., Yi, W., Peng, J.: First-principles investigation of U doping in ZrO2. J. Alloys. Compd. 590(5), 21–26 (2014)CrossRefGoogle Scholar
  22. 22.
    Yang, Y., Fan, X., Liu, C., Ran, R.: First principles study of structural and electronic properties of cubic phase of ZrO2 and HfO2. Physica. B: Phys. Condensed Matter. 434(1), 7–13 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Information Science and EngineeringHebei University of Science and TechnologyShijiazhuangChina
  2. 2.School of ScienceHebei University of Science and TechnologyShijiazhuangChina
  3. 3.Department of Construction EngineeringHebei Vocational College of Politics and LawShijiazhuangChina

Personalised recommendations