Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 8, pp 2529–2537 | Cite as

Modulating the Electronic Properties and Magnetism of Bilayer Phosphorene with Small Gas Molecules Adsorbing

  • Mengyao Sun
  • Zhiyong Wang
  • Junchao Jin
  • Jianrong Xiao
  • Xueqiong Dai
  • Mengqiu Long
Original Paper
  • 123 Downloads

Abstract

First-principles calculations based on the density functional theory have been performed to investigate the physisorption of small gas molecules, including CO, H2, H2O, NH3, NO, NO2, and O2, on the surface of bilayer phosphorene. The calculated results show that (1) CO, NH3, NO, and O2 molecules act as charge donors, whereas H2O, H2, and NO2 molecules serve as charge acceptors. (2) The interaction between O2 molecule and bilayer phosphorene is strongest among all the researched gas molecules.(3) The physisorption of gas molecules on bilayer phosphorene produces prominent charge transfer, which not only makes phosphorene a promising candidate as a gas sensor, but also provides a valid approach to changing the polarity of phosphorene. (4) The band structure of phosphorene is also modulated by decorating with gas molecules, the NO, O2, and NO2 adsorbed bilayer phosphorene system exhibits magnetism, and NO (O2)-adsorbed phosphorene is a typical n(p)-type semiconductor. (5) In addition, the band gap of CO/H2O adsorbed bilayer phosphorene decreases by exerting increasing external electric fields, which suggests that applying an external electric field would be an effective way to tune the electronic properties of phosphorene and broaden the way to the application of phosphorene in nanoelectronic devices.

Keywords

Bilayer phosphorene Gas molecules Physisorption Magnetism First principles 

Notes

Acknowledgments

This study is supported by the National Natural Science Foundation of China (Grant Nos. 11564008 and 11347015), the Scientific Research Foundation of Guilin University of Technology, and the Shanghai Supercomputer Center.

References

  1. 1.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 7065 (2005)CrossRefGoogle Scholar
  2. 2.
    Castro Neto, A.H., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. p. 81 (2009)Google Scholar
  3. 3.
    De Padova, P., Quaresima, C., Ottaviani, C., et al.: Evidence of graphene-like electronic signature in silicene nanoribbons. Appl. Phys. Lett. 96, 26 (2010)CrossRefGoogle Scholar
  4. 4.
    Vogt, P., De Padova, P., Quaresima, C., et al.: Silicene: compelling experimental evidence for graphene like two-dimensional silicon. Phys. Rev. Lett. 108, 15 (2012)Google Scholar
  5. 5.
    Fleurence, A., Friedlein, R., Ozaki, T., et al.: Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 108, 24 (2012)CrossRefGoogle Scholar
  6. 6.
    Jose, D., Datta, A.: Structures and chemical properties of silicene: unlike graphene. Accounts Chem Res. 47, 2 (2014)CrossRefGoogle Scholar
  7. 7.
    Zhang, D., Long, M., Zhang, X., Cao, C., Xu, H., Li, M., Chan, K.: Bipolar spin-filtering, rectifying and giant magnetoresistance effects in zigzag silicene nanoribbons with asymmetric edge hydrogenation. Chem. Phys. Lett. 616–617, 178–183 (2014)CrossRefGoogle Scholar
  8. 8.
    Houssa, M., Scalise, E., Sankaran, K., et al.: Electronic properties of hydrogenated silicene and germanene. Appl. Phys. Lett. 98, 22 (2011)Google Scholar
  9. 9.
    Kou, L., Du, A., Chen, C., et al.: Strain engineering of selective chemical adsorption on monolayer MoS2. Nanoscale 6, 10 (2013)Google Scholar
  10. 10.
    Xiao, J., Long, M.-Q., Li, X.-M., Zhang, Q.-T., Xu, H., Chain, K.S.: Effects of Van der Waals interaction and electric field on the electronic structure of bilayer MoS2. J. Phys. Condens. Matter 26, 405302 (2014)CrossRefGoogle Scholar
  11. 11.
    Li, X.-M., Long, M.-Q., Cui, L.-L., Xiao, J., Zhang, X.-J., Xu, H.: Effects of V-shaped edge defect and H-saturation on spin-dependent electronic transport of zigzag MoS2 nanoribbons. Phys. Lett. A 378, 2701–2707 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Cai, Y., Ke, Q., Zhang, G., et al.: Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene. J. Phys. Chem. C 119, 6 (2015)Google Scholar
  13. 13.
    Yang, Q., Huang, Y., Meng, R., et al.: Adsorption of CO2 and CO gas on impurity-decorated phosphorenes: a first-principles study. International Conference on Electronic Packaging Technology (2016)Google Scholar
  14. 14.
    Zhang, Y., Liu, C., Hao, F., et al.: CO2 Adsorption and separation from natural gas on phosphorene surface: combining DFT and GCMC calculations. Appl. Surf. Sci. 397, 206–212 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    He, Q., Zeng, Z., Yin, Z., et al.: Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8, 19 (2012)Google Scholar
  16. 16.
    Liu, B., Chen, L., Liu, G., et al.: High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 8, 5 (2014)CrossRefGoogle Scholar
  17. 17.
    Mehmood, F., Pachter, R.: Density functional theory study of chemical sensing on surfaces of single-layer MoS2 and graphene. J. Appl. Phys. 115, 16 (2014)CrossRefGoogle Scholar
  18. 18.
    Yu, Z., Li, X., Cai, Q., et al.: Quantitative analysis of structure and bandgap changes in graphene oxide nanoribbons during thermal annealing. J. Amer. Chem. Soc. 134, 28 (2012)Google Scholar
  19. 19.
    He, Y., Xia, F., Shao, Z., et al.: Surface charge transfer doping of monolayer phosphorene via molecular adsorption. J. Phys. Chem. Lett. 6, 23 (2015)Google Scholar
  20. 20.
    Yoon, Y., Ganapathi, K., Salahuddin, S.: How good can monolayer MoS2 transistors be? Nano Lett. 11, 9 (2011)Google Scholar
  21. 21.
    Seixas, L., Carvalho, A., Neto, A.H.C.: Atomically thin dilute magnetism in Co-doped phosphorene. Phys. Rev. B 91, 15 (2015)Google Scholar
  22. 22.
    Liu, H., Du, Y., Deng, Y., et al.: Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 9 (2014)Google Scholar
  23. 23.
    Doganov, R.A., O’Farrell, E.C., Koenig, S.P., et al.: Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nature Communications 6, 6647 (2015)CrossRefGoogle Scholar
  24. 24.
    Peng, X., Wei, Q., Copple, A.: Strain engineered direct-indirect band gap transition and its mechanism in 2D phosphorene. Phys. Rev. B 90, 8 (2014)CrossRefGoogle Scholar
  25. 25.
    Srivastava, P., Hembram, K.P.S.S., Mizuseki, H., et al.: Tuning electronic and magnetic properties of phosphorene by vacancies and adatoms. J. Phys. Chem. C 119, 12 (2015)CrossRefGoogle Scholar
  26. 26.
    Ding, Y., Wang, Y.: Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene: a first-principles study. J. Phys. Chem C 119, 19 (2015)Google Scholar
  27. 27.
    Wang, L., Sofer, Z., Pumera, M.: Cover picture: voltammetry of layered black phosphorus: electrochemistry of multilayer phosphorene. Chemelectrochem 2, 3 (2014)CrossRefGoogle Scholar
  28. 28.
    Koenig, S.P., Doganov, R.A., Schmidt, H., et al.: Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 10 (2014)CrossRefGoogle Scholar
  29. 29.
    Cai, Y., Zhang, G., Zhang, Y.W.: Layer-dependent band alignment and work function of few-layer phosphorene. Sci Rep. p. 4 (2014)Google Scholar
  30. 30.
    Perkins, F.K., Friedman, A.L., Cobas, E., et al.: Chemical vapor sensing with monolayer MoS2. Nano Lett. 13, 2 (2013)CrossRefGoogle Scholar
  31. 31.
    Perdew, J.P., Burke, K., Ernzerhof, M., Perdew, B.: Ernzerhof reply. Phys. Rev. Lett. 80, 4 (1998)CrossRefGoogle Scholar
  32. 32.
    Ding, F.: Challenges in hydrogen adsorptions: from physisorption to chemisorption. Front. Phys. 6, 2 (2011)CrossRefGoogle Scholar
  33. 33.
    Zhou, B., Zhou, B., Zhou, X., et al.: Even-odd effect on the edge states for zigzag phosphorene nanoribbons under a perpendicular electric field. J. Phys. D Appl. Phys. 50, 4 (2017)Google Scholar
  34. 34.
    Liu, B., Chen, L., Liu, G., et al.: High-performance chemical sensing using Schottky contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 8, 5 (2014)CrossRefGoogle Scholar
  35. 35.
    Mehmood, F., Pachter, R.: Density functional theory study of chemical sensing on surfaces of single-layer MoS2 and graphene. J. Appl. Phys. 115, 16 (2014)CrossRefGoogle Scholar
  36. 36.
    Crowther, A.C., Ghassaei, A., Jung, N., et al.: Strong charge-transfer doping of 1 to 10 layer graphene by NO2. ACS Nano 6, 2 (2012)CrossRefGoogle Scholar
  37. 37.
    Leenaerts, O., Partoens, B., Peeters, F.M.: Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first principles study. Phys. Rev. B 77, 12 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Mengyao Sun
    • 1
  • Zhiyong Wang
    • 1
  • Junchao Jin
    • 1
  • Jianrong Xiao
    • 1
  • Xueqiong Dai
    • 2
  • Mengqiu Long
    • 3
  1. 1.College of ScienceGuilin University of TechnologyGuilinChina
  2. 2.Modern Education Technology CenterGuilin University of TechnologyGuilinChina
  3. 3.Hunan Key laboratory of Super Micro-structure and Ultrafast ProcessCentral South UniversityChangshaChina

Personalised recommendations