Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 8, pp 2313–2320 | Cite as

Studies on the Composite System of Bi-2212 Glass Ceramic and MgB2 Superconductors

  • M. Padmavathi
  • R. Singh
Original Paper
  • 76 Downloads

Abstract

The composites of glass ceramic Bi-2212 and MgB2 superconductors were prepared at ambient conditions. The transmission electron microscopy images of the composite samples illustrate the presence of glass ceramic inclusions in bulk MgB2. Temperature-dependent magnetization of the composite samples shows two superconducting transitions: one at 80 K corresponding to the Bi-2212 phase and a second one at 39 K corresponding to the MgB2 phase, suggesting that the two superconducting phases are separated with clear boundaries. The critical current density (J c) and pinning force values are increased in composite systems by an order of magnitude compared to that of individual samples. The pinning mechanism in the composite sample is the same as in the matrix phase. Reduced field maxima (h max) are observed at 0.15 for composite samples. A low value of h max for composite samples indicates the random orientation of grain boundaries and repulsive pinning force in the composite samples.

Keywords

High-Tc superconductors Glass ceramics Composite system Surface morphology Critical current density Pinning mechanism 

Notes

Acknowledgments

M. Padmavathi acknowledges University Grant Commission (UGC), India, for providing financial assistance under Basic Science Research (BSR) fellowship.

References

  1. 1.
    Maeda, H., Tanaka, Y., Fukutomi, M., Asano, T.: Jpn. J. Appl. Phys. 27, L209–L210 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    Tarascon, J.M., McKinnon, W.R., Barboux, P., Hwang, D.M., Bagley, B.G., Greene, L.H., Hull, G.W., LePage, Y., Stoffel, N., Giroud, M.: Phys. Rev. B 38(13), 8885–8892 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    Zacharias, E., Singh, R.: Phys. C 247, 221–230 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    Giller, D., Shaulov, A., Yeshurun, Y.: Phys. B 284-288, 687–688 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Shi, D., Boley, M., Chen, J., Welp, U., Vander Voort, K.: Phys. C 162-164, 927–928 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    Fabbricator, P., Priano, C., sciutti, A., Gemme, G., Musenich, R., Parodi, R.: Phys. Rev. B 54, 12543–12550 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    Matsushita, T.: Supercond. Sci. Tech. 13, 6 (2000)Google Scholar
  8. 8.
    Cardwell, D.A., HariBabu, N., Kambara, M., Campbell, A.M.: Phys. C 373-376, 1262–1265 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Pissas, M., Moraitakis, E., Stamopoulos, D., Papavassilion, G., Psycharis, V., Koutandos, S.: J. Supercond. 14, 615–621 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Cheng, C.H., Yang, Y., Munroe, P., Zhao, Y.: Supercond. Sci. Tech. 20, 296–301 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Dou, S.X., Soltanian, S., Horvat, J., Wang, X.L., Zhou, S.H., Lonescu, M., Liu, H.K.: Appl. Phys. Lett 81, 18 (2002)CrossRefGoogle Scholar
  12. 12.
    Feng, Y., Zhao, Y., Pradhan, A.K., Cheng, C.H., You, J.K.F., Zhou, L., Koshizuka, N., Murakami, M.: J. Appl. Phys. 92, 5 (2002)Google Scholar
  13. 13.
    Cheng, C., Zhao, Y.: Phys. C 463-465, 220–224 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Dogruer, M., et al.: J. Alloys Compd. 556, 143–152 (2013)CrossRefGoogle Scholar
  15. 15.
    Jordan, F., Pna, O., Horyn, R.: Phys. C 235-240, 945–946 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    Rama sita, D., Singh, R.: Solid State Commun. 94(12), 969–972 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    Bal, S., Dogruer, M., Yildirim, G., Varilci, A., Terzioglu, C., Zalaogl, Y.: J. Supercond. Nov. Magn. 25, 847–856 (2012)CrossRefGoogle Scholar
  18. 18.
    Wei, W., Schwartz, J., Goretta, K.C., Balachandran, U., Bhargava, A.: Phys. C 298, 279–288 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    Hazen, R.M., et al.: Phys. Rev. Lett. 60(12), 1174–1177 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    Zhu, Y., Niewczas, M., Couillard, M., Botton, G.A.: Ultra Microscopy 06, 1076–1081 (2006)CrossRefGoogle Scholar
  21. 21.
    Gokhfeld, D.M., Balaev, D.A., Petrov, M.I., Popkov, S.I., Shaykhutdinov, K.A., Val’kov, V.V.: J. Appl. Phys. 109, 033904 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Chen, D.X., Goldfab, R.B., Cross, R.W., Sanchez, A.: Phys. Rev. B 48, 6426–6429 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    Larbalestier, D.C., et al.: Nature 410, 186–189 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    Cheng, C., Zhao, Y.: Phys. C 463-465, 220–224 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Prokhorov, V.G., et al.: Supercond. Sci. Technol. 22, 045027 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Chen, D.X., Cross, R.W., Sacnchez, A.: Phys. C 33, 695–703 (1993)Google Scholar
  27. 27.
    Dew-Hughes, D.: Philos. Mag. 30:2, 293–305 (1974)ADSCrossRefGoogle Scholar
  28. 28.
    Kramer, E.J.: J. Appl. Phys. 44, 1360–1370 (1973)ADSCrossRefGoogle Scholar
  29. 29.
    Prokhorov, V.G., et al.: Supercond. Sci. Technol. 22, 045027 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    Shen, T.M., et al.: Supercond. Sci. Technol. 18, L49–L52 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of PhysicsUniversity of HyderabadHyderabadIndia

Personalised recommendations