Advertisement

Local Noncentrosymmetric Structure of Bi2Sr2CaCu2O8+y by X-ray Magnetic Circular Dichroism at Cu K-Edge XANES

  • Andrey A. IvanovEmail author
  • Valentin G. Ivanov
  • Alexey P. Menushenkov
  • Fabrice Wilhelm
  • Andrei Rogalev
  • Alessandro Puri
  • Boby Joseph
  • Wei Xu
  • Augusto Marcelli
  • Antonio Bianconi
Original Paper

Abstract

The two-dimensional Bi2Sr2CaCu2O8+y (Bi2212), the most studied prototype cuprate superconductor, is a lamellar system made of a stack of two-dimensional corrugated CuO2 bilayers separated by Bi2O2 + y Sr2 O2 layers. While the large majority of theories, proposed to interpret unconventional high T c superconductivity in Bi2Sr2CaCu2O8+y , assume a centrosymmetric tetragonal CuO2 lattice for the [CuO2]Ca[CuO2] bilayer, here, we report new compelling results providing evidence for local noncentrosymmetric symmetry at the Cu atom. We have measured polarized Cu K-edge XANES (X-ray absorption near-edge structure) and the K-edge X-ray magnetic circular dichroism (XMCD) of a Bi2212 single-crystal near-optimum doping. The Cu K-edge XMCD signal was measured at ID12 beamline of ESRF with the k-vector of X-ray beam parallel to c-axis, i.e., with the electric field of X-ray beam E//ab, using a 17-T magnetic field parallel to the c-axis of a Bi2212 single crystal. Numerical simulations of the XMCD signal of Bi2212 by multiple scattering theory have shown agreement with the experimental XMCD signal only for the local structure with noncentrosymmetric Bb2b space group of Bi2Sr2CaCu2O8+y .

Keywords

Bi2Sr2CaCu2O8+y (Bi2212) X-ray absorption near edge structure (XANES) X-ray magnetic circular dichroism (XMCD) Cu K-edge Noncentrosymmetric superconductivity 

Notes

Acknowledgements

The experiment has been supported by superstripes-onlus. The experiments were performed on beamline ID12 at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. We are grateful to ESRF for beam time allocation and traveling support and ESRF staff for providing assistance in using beamline.

Funding Information

Wei Xu acknowledges the financial support from NSFC (Grant No. U1532128) and LNF from the framework of INFN&IHEP collaboration.

References

  1. 1.
    Maeda, H., Tanaka, Y., Fukutomi, M., Asano, T.: A new high-Tc oxide superconductor without a rare earth element. Jpn. J. Appl. Phys. 27, L209 (1988).  https://doi.org/10.1143/jjap.27.l209 ADSCrossRefGoogle Scholar
  2. 2.
    Tarascon, J.M., et al.: Crystal substructure and physical properties of the superconducting phase Bi4(Sr,Ca)6Cu4O16+x. Phys. Rev. B 37, 9382 (1988).  https://doi.org/10.1103/physrevb.37.9382
  3. 3.
    Bordet, P., et al.: Powder x-ray and neutron diffraction study of the superconductor Bi2Sr2CaCu2O8. Physica C: Supercond. 623, 153–155 (1988).  https://doi.org/10.1016/s0921-4534(88)80006-6 Google Scholar
  4. 4.
    Sleight, A.W.: Chemistry of high-temperature superconductors. Science 242, 1519 (1988).  https://doi.org/10.1126/science.242.4885.1519 ADSCrossRefGoogle Scholar
  5. 5.
    Bordet, P., et al.: A note on the symmetry and Bi valence of the superconductor Bi2Sr2Ca1Cu2O8. Physica C: Supercond. 156, 189 (1988).  https://doi.org/10.1016/0921-4534(88)90126-8 ADSCrossRefGoogle Scholar
  6. 6.
    Petricek, V., Gao, Y., Lee, P., Coppens, P.: X-ray analysis of the incommensurate modulation in the 2:2:1:2 Bi-Sr-Ca-Cu-O superconductor including the oxygen atoms. Phys. Rev. B 42, 387 (1990).  https://doi.org/10.1103/physrevb.42.387 ADSCrossRefGoogle Scholar
  7. 7.
    Gao, Y., Lee, P., Coppens, P., Subramania, M.A., Sleight, A.W.: The incommensurate modulation of the 2212 Bi-Sr-Ca-Cu-O superconvductor. Science 241, 954 (1988).  https://doi.org/10.1126/science.241.4868.954 ADSCrossRefGoogle Scholar
  8. 8.
    Le Page, Y., McKinnon, W., Tarascon, J.M., Barboux, P.: Origin of the incommensurate modulation of the 80-K superconductor Bi2Sr2CaCu2O8.21 derived from isostructural commensurate Bi10Sr15Fe10O46. Phys. Rev. B 40, 6810 (1989).  https://doi.org/10.1103/physrevb.40.6810 ADSCrossRefGoogle Scholar
  9. 9.
    Beskrovnyi, A.: Neutron diffraction study of the modulated structure of Bi2(Sr, Ca)3Cu2O8+y. Physica C: Supercond. 166, 79 (1990).  https://doi.org/10.1016/0921-4534(90)90556-t ADSCrossRefGoogle Scholar
  10. 10.
    Yamamoto, A., et al.: Rietveld analysis of the modulated structure in the superconducting oxide Bi2(Sr,Ca)3Cu2O8+x. Phys. Rev. B 42, 4228 (1990).  https://doi.org/10.1103/physrevb.42.4228 ADSCrossRefGoogle Scholar
  11. 11.
    Kan, X.B., Moss, S.C.: Four-dimensional crystallographic analysis of the incommensurate modulation in a Bi2Sr2CaCu2O8 single crystal. Acta Cryst. B48, 122 (1992).  https://doi.org/10.1107/s0108768191011333 CrossRefGoogle Scholar
  12. 12.
    Miles, P.A., et al.: Refinement of the incommensurate structure of high quality Bi-2212 single crystals from a neutron diffraction study. Physica C: Supercond. 294, 275 (1998).  https://doi.org/10.1016/s0921-4534(97)01682-1 ADSCrossRefGoogle Scholar
  13. 13.
    Bianconi, A., Lusignoli, M., Saini, N.L., Bordet, P., Kvick, Ã. , Radaelli, P.G.: Stripe structure of the CuO2 plane in Bi2Sr2CaCu2O8+y by anomalous x-ray diffraction. Phys. Rev. B 54, 4310 (1996).  https://doi.org/10.1103/physrevb.54.4310 ADSCrossRefGoogle Scholar
  14. 14.
    Balzarotti, A., et al.: Core transitions from the Al 2p level in amorphous and crystalline Al2O3. Physica Status Solidi (b) 63, 77 (1974).  https://doi.org/10.1002/pssb.2220630106 ADSCrossRefGoogle Scholar
  15. 15.
    Bianconi, A., Doniach, S., Lublin, D.: X-ray Ca K-edge of calcium adenosine triphosphate system and of simple Ca compounds. Chem. Phys. Lett. 59, 121 (1978).  https://doi.org/10.1016/0009-2614(78)85629-2 ADSCrossRefGoogle Scholar
  16. 16.
    Bianconi, A.: Surface X-ray absorption spectroscopy: Surface EXAFS and surface XANES. Appl. Surf. Sci. 63, 392 (1980) http://www.sciencedirect.com/science/article/pii/0378596380900240 ADSCrossRefGoogle Scholar
  17. 17.
    Garcia, J., et al.: Coordination geometry of transition metal ions in dilute solutions by XANES. Le Journal de Physique Colloques 47(C8), C8–49 (1986).  https://doi.org/10.1051/jphyscol:1986807 CrossRefGoogle Scholar
  18. 18.
    Bianconi, A., et al.: Lack of delocalized Cu p states at the Fermi level in the high-Tc superconductor YBa2Cu3O7 by XANES spectroscopy. Zeitschrift für Physik B Cond. Matter 67, 307 (1987).  https://doi.org/10.1007/BF01307254 ADSCrossRefGoogle Scholar
  19. 19.
    Kas, J.J., Jorissen, K., Rehr, J.J.: Real-space multiple-scattering theory of x-ray spectra, vol. 51–72. Wiley, Chichester (2016)Google Scholar
  20. 20.
    Bianconi, A., et al.: Cu K-edge polarized x-ray-absorption near-edge structure of Bi2CaSr2Cu2O8. Phys. Rev. B 44, 4560 (1991).  https://doi.org/10.1103/physrevb.44.4560 ADSCrossRefGoogle Scholar
  21. 21.
    Ebert, H., Strange, P., Gyorffy, B.L.: Theory of circularly polarized x-ray absorption by ferromagnetic Fe. J. Appl. Phys. 63, 3055 (1988).  https://doi.org/10.1063/1.340894 ADSCrossRefGoogle Scholar
  22. 22.
    Juhin, A., et al.: X-ray magnetic circular dichroism measured at the Fe K-edge with a reduced intrinsic broadening: X-ray absorption spectroscopy versus resonant inelastic x-ray scattering measurements. J. Phys.: Condens. Matter 28, 505202 (2016).  https://doi.org/10.1088/0953-8984/28/50/505202 Google Scholar
  23. 23.
    Chaboy, J., et al.: X-ray magnetic circular dichroism at the iron K-edge in rare-earth-transition-metal intermetallics: Experimental probe of the rare-earth magnetic moment. Phys. Rev. B 54, R15637 (1996).  https://doi.org/10.1103/physrevb.54.r15637 ADSCrossRefGoogle Scholar
  24. 24.
    Subías, G., García, J., Sánchez, M.C.: Mn K-edge XMCD study of the mixed-valence state of Mn-based molecular nanomagnets. In: AIPConference Proceedings, 783 (AIP) (2007)  https://doi.org/10.1063/1.2644663
  25. 25.
    Rogalev, A., Wilhelm, F.: Magnetic circular dichroism in the hard X-ray range. Phys. Met. Metallogr. 116, 1285 (2015).  https://doi.org/10.1134/s0031918x15130013 ADSCrossRefGoogle Scholar
  26. 26.
    Matsuda, Y., et al.: High-Magnetic-field XMCD as a novel tool for the study of valence fluctuation phenomena—application to Eu-based intermetallic compounds. J. Low Temp. Phys. 159, 292 (2010).  https://doi.org/10.1007/s10909-009-0129-z ADSCrossRefGoogle Scholar
  27. 27.
    Mathon, O., et al.: XMCD under pressure at the Fe K edge on the energy-dispersive beamline of the ESRF. J. Synchrotron. Radiat. 11, 423–427 (2004).  https://doi.org/10.1107/s0909049504018862 CrossRefGoogle Scholar
  28. 28.
    Kubota, M., Ono, K., Oohara, Y., Eisaki, H.: X-ray optical activity in underdoped Bi-based high-TC superconductor. J. Physical Soc. Japan 75, 053706 (2006).  https://doi.org/10.1143/JPSJ.75.053706 ADSCrossRefGoogle Scholar
  29. 29.
    Norman, M.R.: X-ray natural dichroism and chiral order in underdoped cuprates. Phys. Rev. B 87, 180506 (2013).  https://doi.org/10.1103/physrevb.87.180506 ADSCrossRefGoogle Scholar
  30. 30.
    Di Matteo, S., Varma, C.M.: Symmetry considerations for detection of time-reversal breaking phases in cuprates by x-ray diffraction and absorption. Phys. Rev. B 67, 134502 (2003).  https://doi.org/10.1103/physrevb.67.134502 ADSCrossRefGoogle Scholar
  31. 31.
    Di Matteo, S., Norman, M.R.: X-ray dichroism and the pseudogap phase of cuprates. Phys. Rev. B 76, 014510 (2007).  https://doi.org/10.1103/physrevb.76.014510 ADSCrossRefGoogle Scholar
  32. 32.
    De Luca, G.M., Ghiringhelli, G., Moretti Sala, M., Di Matteo, S., Haverkort, M.W., Berger, H., Bisogni, V., Cezar, J.C., Brookes, N.B., Salluzzo, M.: Weak magnetism in insulating and superconducting cuprates. Phys. Rev. B 82, 214504 (2010).  https://doi.org/10.1103/physrevb.82.214504 ADSCrossRefGoogle Scholar
  33. 33.
    Balzarotti, A., Bianconi, A., Burattini, E.: Role of the density of conduction states on the LB2,3 absorption spectrum of aluminum. Phys. Rev. B 9, 5003 (1974).  https://doi.org/10.1103/physrevb.9.5003 ADSCrossRefGoogle Scholar
  34. 34.
    Bianconi, A., et al.: Symmetry of the hole states in BiCaSrCuO High-Tc superconductors. Modern Phys. Lett. B (MPLB) 2, 1313 (1988) http://www.worldscinet.com/mplb/02/0211n12/S0217984988001302.html ADSCrossRefGoogle Scholar
  35. 35.
    Bianconi, A., Della Longa, S., Li Pompa, M., Congiu-Castellano, A., Udron, D., Flank, A.M., Lagarde, P.: Linearly polarized Cu L3-edge x-ray-absorption near-edge structure of Bi2CaSr2Cu2O8. Phys. Rev. B Condens. Matter 44, 10126 (1991).  https://doi.org/10.1103/physrevb.44.10126 ADSCrossRefGoogle Scholar
  36. 36.
    Zeljkovic, I., et al.: Nanoscale interplay of strain and doping in a high-temperature superconductor. Nano Lett. 14, 6749 (2014).  https://doi.org/10.1021/nl501890k ADSCrossRefGoogle Scholar
  37. 37.
    Di Castro, D., Bianconi, G., Colapietro, M., Pifferi, A., Saini, N. L., Agrestini, S., Bianconi, A.: Evidence for the strain critical point in high Tc superconductors. Eur. Phys. J. B-Cond. Matter Complex Syst. 18, 617 (2000).  https://doi.org/10.1007/s100510070010 CrossRefGoogle Scholar
  38. 38.
    Bianconi, A., Agrestini, S., Bianconi, G., Di Castro, D., Saini, N.L.: A quantum phase transition driven by the electron lattice interaction gives high Tc superconductivity. J. Alloys Compd. 317–318, 537 (2001).  https://doi.org/10.1016/s0925-8388(00)01383-9 CrossRefGoogle Scholar
  39. 39.
    Bianconi, A., Saini, N.L., Agrestini, S., Di Castro, D., Bianconi, G.: The strain quantum critical point for superstripes in the phase diagram of all cuprate perovskites. Int. J. Modern Phys. B 14, 3342 (2000).  https://doi.org/10.1142/S0217979200003812 ADSCrossRefGoogle Scholar
  40. 40.
    Gabovich, A. M., Voitenko, A. I., Annett, J. F., Ausloos, M.: Charge- and spin-density-wave superconductors. Supercond. Sci. Technol. 14, R1 (2001).  https://doi.org/10.1088/0953-2048/14/4/201 ADSCrossRefGoogle Scholar
  41. 41.
    Bianconi, A.: On the Fermi liquid coupled with a generalized Wigner polaronic CDW giving high Tc superconductivity. Solid State Commun. 91, 1 (1994).  https://doi.org/10.1016/0038-1098(94)90831-1 ADSCrossRefGoogle Scholar
  42. 42.
    Lanzara, A., Saini, N.L., Brunelli, M., Valletta, A., Bianconi, A.: Evidence for onset of charge density wave in the La-based perovskite superconductors. J. Supercond. Nov. Magn. 10, 319 (1997).  https://doi.org/10.1007/bf02765711 ADSCrossRefGoogle Scholar
  43. 43.
    Pouget, J.-P.: Bond and charge ordering in low-dimensional organic conductors. Phys. B Condens. Matter 407, 1762 (2012).  https://doi.org/10.1016/j.physb.2012.01.025 ADSCrossRefGoogle Scholar
  44. 44.
    Monceau, P.: Electronic crystals: An experimental overview. Adv. Phys. 61, 325 (2012).  https://doi.org/10.1080/00018732.2012.719674 ADSCrossRefGoogle Scholar
  45. 45.
    Bianconi, A., et al.: Stripe structure in the CuO2 plane of perovskite superconductors. Phys. Rev. B 54, 12018 (1996).  https://doi.org/10.1103/physrevb.54.12018 ADSCrossRefGoogle Scholar
  46. 46.
    Slezak, J.A., et al.: Imaging the impact on cuprate superconductivity of varying the interatomic distances within individual crystal unit cells. Proc. Natl. Acad. Sci. 105, 3203 (2008).  https://doi.org/10.1073/pnas.0706795105 ADSCrossRefGoogle Scholar
  47. 47.
    Poccia, N., et al.: Spatial inhomogeneity and planar symmetry breaking of the lattice incommensurate supermodulation in the high-temperature superconductor Bi2Sr2CaCu2O8+y. Phys. Rev. B 84, 100504 (2011).  https://doi.org/10.1103/physrevb.84.100504 ADSCrossRefGoogle Scholar
  48. 48.
    Zeljkovic, I., et al.: Scanning tunnelling microscopy imaging of symmetry-breaking structural distortion in the bismuth-based cuprate superconductors. Nat. Mater. 11, 585 (2012).  https://doi.org/10.1038/nmat3315 ADSCrossRefGoogle Scholar
  49. 49.
    Campi, G., et al.: Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor. Nature 525, 359 (2015).  https://doi.org/10.1038/nature14987 ADSCrossRefGoogle Scholar
  50. 50.
    Bianconi, A., Agrestini, S., Campi, G., Filippi, M., Saini, N.L.: Common features in high Tc cuprates and diborides. Curr. Appl. Phys. 5, 254 (2005).  https://doi.org/10.1016/j.cap.2004.02.010 ADSCrossRefGoogle Scholar
  51. 51.
    Kugel, K.I., Rakhmanov, A.L., Sboychakov, A.O., Poccia, N., Bianconi, A.: Model for phase separation controlled by doping and the internal chemical pressure in different cuprate superconductors. Phys. Rev. B 78, 165124 (2008).  https://doi.org/10.1103/physrevb.78.165124 ADSCrossRefGoogle Scholar
  52. 52.
    Caivano, R., Fratini, M., Poccia: Feshbach resonance and mesoscopic phase separation near a quantum critical point in multiband FeAs-based superconductors. Supercond. Sci. Technol. 22, 014004 (2009).  https://doi.org/10.1088/0953-2048/22/1/014004 ADSCrossRefGoogle Scholar
  53. 53.
    Campi, G., Innocenti, D., Bianconi, A.: CDW and similarity of the Mott Insulator-to-Metal transition in cuprates with the gas-to-liquid-liquid transition in supercooled water. J. Supercond. Nov. Magn. 28, 1355 (2015).  https://doi.org/10.1007/s10948-015-2955-3 CrossRefGoogle Scholar
  54. 54.
    Campi, G., Bianconi, A.: High-Temperature superconductivity in a hyperbolic geometry of complex matter from nanoscale to mesoscopic scale. J. Supercond. Nov. Magn. 29, 627 (2016).  https://doi.org/10.1007/s10948-015-3326-9 CrossRefGoogle Scholar
  55. 55.
    Yurgens, A.A.: Intrinsic Josephson junctions. Supercond. Sci. Technol. 13, R85 (2000)ADSCrossRefGoogle Scholar
  56. 56.
    Romanowsky, M.B., Capasso, F.: Phys. Rev. A 78, 042110 (2008).  https://doi.org/10.1103/physreva.78.042110 ADSCrossRefGoogle Scholar
  57. 57.
    Welp, U., Kadowaki, K., Kleiner, R.: Superconducting emitters of THz radiation. Nat. Photonics 7, 702 (2013).  https://doi.org/10.1038/nphoton.2013.216 ADSCrossRefGoogle Scholar
  58. 58.
    Laplace, Y., Cavalleri, A.: Josephson plasmonics in layered superconductors. Adv. Phys. X(1), 387 (2016).  https://doi.org/10.1080/23746149.2016.1212671 Google Scholar
  59. 59.
    Saini, N., et al.: Topology of the pseudogap and shadow bands in Bi2Sr2CaCu2O8+ at optimum doping. Phys. Rev. Lett. 79, 3467 (1997).  https://doi.org/10.1103/physrevlett.79.3467 ADSCrossRefGoogle Scholar
  60. 60.
    Mans, A., et al.: Experimental proof of a structural origin for the shadow Fermi surface of Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 96, 107007 (2006).  https://doi.org/10.1103/physrevlett.96.107007 ADSCrossRefGoogle Scholar
  61. 61.
    Bianconi, A., et al.: Determination of the local lattice distortions in the CuO2 plane of La1.85Sr0.15CuO4. Phys. Rev. Lett. 76, 3412 (1996).  https://doi.org/10.1103/physrevlett.76.3412 ADSCrossRefGoogle Scholar
  62. 62.
    Saini, N.L., et al.: Evidence for anisotropic atomic displacements and orbital distribution in the inhomogeneous CuO2 plane of the Bi2Sr2CaCu2O8+δ system. J. Phys. Chem. Solids 65, 1439 (2004).  https://doi.org/10.1016/j.jpcs.2003.12.011 ADSCrossRefGoogle Scholar
  63. 63.
    Fu, Z., et al.: Incommensurate modulations in Bi-2212 high-Tc superconductor revealed by single-crystal X-ray analysis using direct methods. Sci. Chin. (series A) 38, 210 (1995)Google Scholar
  64. 64.
    Perez-Mato, J.M., Etrillard, J., Kiat, J.M., Liang, B., Lin, C.T.: Competition between composite and modulated configurations in Bi2Sr2CaCu2O8+δ and its relation to oxygen stoichiometry. Phys. Rev. B 67, 024504 (2003).  https://doi.org/10.1103/physrevb.67.024504 ADSCrossRefGoogle Scholar
  65. 65.
    Kaneko, S., Akiyama, K., Funakubo, H., Yoshimoto, M.: Strain-amplified structural modulation of Bi-cuprate high-Tc superconductors. Phys. Rev. B 74, 054503 (2006).  https://doi.org/10.1103/physrevb.74.054503 ADSCrossRefGoogle Scholar
  66. 66.
    Kaneko, S., et al.: Structural modulation in bismuth cuprate superconductor observed by x-ray reciprocal space mapping. J. Cryst. Growth 287, 483 (2006).  https://doi.org/10.1016/j.jcrysgro.2005.11.063 ADSCrossRefGoogle Scholar
  67. 67.
    Carva, K., Legut, D., Oppeneer, P.M.: Influence of laser-excited electron distributions on the x-ray magnetic circular dichroism spectra: Implications for femtosecond demagnetization in Ni. EPL (Europhys. Lett.) 86, 57002 (2009).  https://doi.org/10.1209/0295-5075/86/57002 ADSCrossRefGoogle Scholar
  68. 68.
    Wang, H., Patil, D.S., Ralston, C.Y., Bryant, C., Cramer, S.P.: L-Edge X-ray magnetic circular dichroism of Ni enzymes: Direct probe of Ni spin states. J. Electron Spectrosc. Relat. Phenom. 114–116, 865 (2001).  https://doi.org/10.1016/s0368-2048(00)00375-3 CrossRefGoogle Scholar
  69. 69.
    Wilhelm, F., et al.: X-ray magnetic circular dichroism experiments and theory of transuranium laves phase compounds. Phys. Rev. B 88, 024424 (2013).  https://doi.org/10.1103/physrevb.88.024424 ADSCrossRefGoogle Scholar
  70. 70.
    Bauer, E., Sigrist, M.: Non-centrosymmetric Superconductors: Introduction and Overview Lecture Notes in Physics, vol. 847. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  71. 71.
    Smidman, M., Salamon, M.B., Yuan, H.Q., Agterberg, D.F.: Superconductivity and spin-orbit coupling in non-centrosymmetric materials: A review 2016. arXiv:1609.05953
  72. 72.
    Sato, M., Fujimoto, S.: Topological phases of noncentrosymmetric superconductors: Edge states, Majorana fermions, and the non-Abelian statistics. Phys. Rev. B 79, 094504 (2009)ADSCrossRefGoogle Scholar
  73. 73.
    Liu, B., Yuan, F., Hu, X.: Impurity induced resonance states at the superconducting interface LaAlO3/SrTiO3. J. Phys. Chem. Solids 72, 380 (2011).  https://doi.org/10.1016/j.jpcs.2010.10.036 ADSCrossRefGoogle Scholar
  74. 74.
    Qian, M., Dong, J., Xing, D.Y.: Optical properties of the ferroelectromagnet YMnO3 studied from first principles. Phys. Rev. B 63, 155101 (2001).  https://doi.org/10.1103/physrevb.63.155101 ADSCrossRefGoogle Scholar
  75. 75.
    Jooss, C., et al.: Polaron melting and ordering as key mechanisms for colossal resistance effects in manganites. Proc. Natl. Acad. Sci. 104, 13597 (2007).  https://doi.org/10.1073/pnas.0702748104 ADSCrossRefGoogle Scholar
  76. 76.
    Šetinc, T., Spreitzer, M., Kunej, Å, Kovč, J., Suvorov, D.: Temperature stable dielectric behavior of Sol-Gel derived compositionally graded SrTiO3/Na0.5Bi0.5TiO3/SrTiO3 thin films. J. Am. Ceram. Soc. 96, 3511 (2013).  https://doi.org/10.1111/jace.12519 CrossRefGoogle Scholar
  77. 77.
    Chang, P.-Y., Matsuura, S., Schnyder, A.P., Ryu, S.: Majorana vortex-bound states in three-dimensional noncentrosymmetric superconductors. Phys. Rev. B 90, 174504 (2014)ADSCrossRefGoogle Scholar
  78. 78.
    Fak, B., Raymond, S., Braithwaite, D., Lapertot, G., Mignot, J.M.: Low-energy magnetic response of the noncentrosymmetric heavy-fermion superconductor CePt3,Si studied via inelastic neutron scattering. Phys. Rev. B 78, 184518 (2008).  https://doi.org/10.1103/physrevb.78.184518 ADSCrossRefGoogle Scholar
  79. 79.
    Tada, Y., Kawakami, N., Fujimoto, S.: Colossal enhancement of upper critical fields in noncentrosymmetric heavy fermion superconductors near quantum criticality: CeRhSi3. Phys. Rev. Lett 101, 267006 (2008) arXiv:0808.0545 ADSCrossRefGoogle Scholar
  80. 80.
    Bauer, E., et al.: BaPtSi3: A noncentrosymmetric BCS-like superconductor. Phys. Rev. B, 80 (2009).  https://doi.org/10.1103/physrevb.80.064504
  81. 81.
    Yoshida, R., et al.: Bulk-sensitive spectroscopic studies on noncentrosymmetric superconducting system of Mg–Ir–B. Physica C: Supercond. 469, 1034 (2009).  https://doi.org/10.1016/j.physc.2009.05.175 ADSCrossRefGoogle Scholar
  82. 82.
    Tafti, F.F., et al.: Superconductivity in the noncentrosymmetric half-Heusler compound LuPtBi: A candidate for topological superconductivity. Phys. Rev. B 87, 184504 (2013).  https://doi.org/10.1103/physrevb.87.184504 ADSCrossRefGoogle Scholar
  83. 83.
    Isobe, M., Yoshida, H., Kimoto, K., Arai, M., Takayama-Muromachi, E.: SrAuSi3: A noncentrosymmetric superconductor. Chem. Mater. 26, 2155–2165 (2014).  https://doi.org/10.1021/cm500032u CrossRefGoogle Scholar
  84. 84.
    Wang, Z., et al.: Correlation between superconductivity and bond angle of CrAs chain in non-centrosymmetric compounds A2Cr3As3 (A = K, Rb). Sci. Rep. 6, 37878 (2016).  https://doi.org/10.1038/srep37878 ADSCrossRefGoogle Scholar
  85. 85.
    Benia, H.M., et al.: Observation of Dirac surface states in the noncentrosymmetric superconductor BiPd. Phys. Rev. B 94 (2016).  https://doi.org/10.1103/physrevb.94.121407
  86. 86.
    Singh, D., Sajilesh, K.P., Marik, S., Hillier, A.D., Singh, R.P.: Superconducting properties of the noncentrosymmetric superconductor TaOs (2017). arXiv:1709.09591

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Andrey A. Ivanov
    • 1
    Email author return OK on get
  • Valentin G. Ivanov
    • 1
  • Alexey P. Menushenkov
    • 1
  • Fabrice Wilhelm
    • 2
  • Andrei Rogalev
    • 2
  • Alessandro Puri
    • 3
  • Boby Joseph
    • 4
  • Wei Xu
    • 5
  • Augusto Marcelli
    • 6
    • 7
  • Antonio Bianconi
    • 1
    • 7
    • 8
  1. 1.National Research Nuclear University Moscow Engineering Physics Institute (MEPhI)MoscowRussia
  2. 2.European Synchrotron Radiation Facility (ESRF)Grenoble Cedex 9France
  3. 3.CNR-IOM-OGG, c/o ESRF LISA CRGGrenobleFrance
  4. 4.Sincrotrone ElettraBasovizzaItaly
  5. 5.Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijingPeople’s Republic of China
  6. 6.Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di FrascatiFrascatiItaly
  7. 7.Rome International Centre for Material Science Superstripes (RICMASS)RomeItaly
  8. 8.Institute of Crystallography, Consiglio Nazionale delle Ricerche (CNR-IC)MonterotondoItaly

Personalised recommendations