Advertisement

Anisotropic Thermal Expansion of p-Terphenyl: a Self-Assembled Supramolecular Array of Poly-p-phenyl Nanoribbons

  • Luisa Barba
  • Giuseppe Chita
  • Gaetano CampiEmail author
  • Lorenza Suber
  • Elvira Maria Bauer
  • Augusto Marcelli
  • Antonio Bianconi
Original Paper

Abstract

The recent discovery of superconductivity in a metallic aromatic hydrocarbon, alkali-doped p-terphenyl, has attracted considerable interest. The critical temperature T c ranges from few to 123 K, the record for organic superconductors, due to uncontrolled competition of multiple phases and dopants concentrations. In the proposed mechanism of Fano resonance in a superlattice of quantum wires with coexisting polarons and Fermi particles, the lattice properties play a key role. Here, we report a study of the temperature evolution of the parent compound p-terphenyl crystal structure proposed to be made of a self-assembled supramolecular network of nanoscale nanoribbons. Using temperature-dependent synchrotron X-ray diffraction, we report the anisotropic thermal expansion in the ab plane, which supports the presence of a nanoscale network of one-dimensional nanoribbons running in the b-axis direction in the P21/a structure. Below the enantiotropic phase transition at 193 K, the order parameter of the C-1 structure follows a power law behavior with the critical exponent α = 0.34 ± 0.02 and the thermal expansion of the a-axis and b-axis show major changes supporting the formation of a two-dimensional bonds network. The large temperature range of the orientation fluctuations in a double well potential of the central phenyl has been determined.

Keywords

Synchrotron X ray diffraction Lattice dynamics Superconductivity 

References

  1. 1.
    Gao, Y., Wang, R.-S., Wu, X.-L., Cheng, J., Deng, T.-G., Yan, X.-W., Huang, Z.-B.: Searching superconductivity in potassium-doped p-terphenyl. Acta Phys. Sin. 65, 077402 (2016).  https://doi.org/10.7498/aps.65.077402 Google Scholar
  2. 2.
    Wang, R.-S., Gao, Y., Huang, Z.-B., Chen, X.-J.: Superconductivity at 43 K in a single C-C bond linked terphenyl. arXiv:1703.05804 (2017)
  3. 3.
    Wang, R.-S., Gao, Y., Huang, Z.-B., Chen, X.-J: Superconductivity above 120 kelvin in a chain link molecule. arXiv:1703.06641 (2017)
  4. 4.
    Li, H., Zhou, X., Parham, S., Nummy, T., Griffith, J., Gordon, K., Chronister, E.L., Dessau, D.S.: Spectroscopic evidence of pairing gaps to 60 kelvin or above in surface-doped p-terphenyl crystals. arXiv:1704.04230 (2017)
  5. 5.
    Liu, W., Lin, H., Kang, R., Zhang, Y., Zhu, X., Wen, H.-H.: Magnetization of potassium doped p-terphenyl and p-quaterphenyl by high pressure synthesis. arXiv:1706.06018 (2017)
  6. 6.
    Ren, M.Q., Chen, W., Liu, Q., Chen, C., Qiao, Y.J., Chen, Y.J., Zhou, G., Zhang, T., Yan, Y.J., Feng, D.L.: Observation of novel gapped phases in potassium doped single layer p-terphenyl on Au(111). arXiv:1705.09901 (2017)
  7. 7.
    Maheshwari, P.K., Meena, R.S., Gahtori, B., Goyal, R., Sultana, R., Rani, P., Awana, V.P.S.: Novel solid-State growth of p-terphenyl: the parent high-Tc organic superconductor (HTOS). J. Supercond. Nov. Magn. 30 (11), 2997–3000 (2017).  https://doi.org/10.1007/s10948-017-4250-y CrossRefGoogle Scholar
  8. 8.
    Mazziotti, M.V., Valletta, A., Campi, G., Innocenti, D., Perali, A., Bianconi, A.: Possible Fano resonance for high Tc multi-gap superconductivity in p-terphenyl doped by K at the Lifshitz transition. EPL (Europhysics Letters) 118 (3), 37003 (2017).  https://doi.org/10.1209/0295-5075/118/37003 ADSCrossRefGoogle Scholar
  9. 9.
    Bianconi, A.: US Patent 6,265,019, 2001. Process of increasing the critical temperature Tc of a bulk superconductor by making metal heterostructures at the atomic limit (priority date 1993-12-07). Publication info: US6265019 (B1) 2001-07-24. URL US6265019 (B1)-Process of increasing the critical temperature Tc of a bulk superconductor by making metal heterostructures at the atomic limitGoogle Scholar
  10. 10.
    Bianconi, A., Agrestini, S.: European Patent EP1447857, 2004. Sc1-xMgxB2 superconductors tuned at a shape resonance for Tc amplification (priority date 2003-02-12). Publication info: EP1447857 (A1) 2004-08-18. URL EP1447857 (A1)-Sc1-xMgxB2 superconductors tuned at a shape resonance for Tc amplificationGoogle Scholar
  11. 11.
    Bianconi, A.: Feshbach shape resonance in multiband superconductivity in heterostructures. J. Supercond. 18, 625–636 (2005).  https://doi.org/10.1007/s10948-005-0047-5 ADSCrossRefGoogle Scholar
  12. 12.
    Zhong, G.-H., Wang, X.-H., Wang, R.-S., Han, J.-X., Zhang, C., Chen, X.-J., Lin, H.-Q.: Structural and bonding character of potassium -doped p-terphenyl superconductors. arXiv:1706.03965 (2017)
  13. 13.
    Geilhufe, R.M., Borysov, S.S., Kalpakchi, D., Balatsky, A.V.: Novel organic high-Tc superconductors: data mining using density of states similarity search. arXiv:1709.03151 (2017)
  14. 14.
    Bianconi, A.: On the possibility of new high Tc superconductors by producing metal heterostructures as in the cuprate perovskites. Solid State Commun. 89(11), 933–936 (1994).  https://doi.org/10.1016/0038-1098(94)90354-9 ADSCrossRefGoogle Scholar
  15. 15.
    Bianconi, A.: On the Fermi liquid coupled with a generalized Wigner polaronic CDW giving high Tc. Superconductivity Solid State Communications 91(1), 1–5 (1994).  https://doi.org/10.1016/0038-1098(94)90831-1 ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Ricci, A., Poccia, N., Campi, G., Coneri, F., Barba, L., Arrighetti, G., Polentarutti, M., Burghammer, M., Sprung, M., Zimmermann, M., Bianconi, A.: Networks of superconducting nano-puddles in 1/8 doped YBa2Cu3O6.5+y controlled by thermal manipulation. New J. Phys. 16(5), 053030 (2014).  https://doi.org/10.1088/1367-2630/16/5/053030 ADSCrossRefGoogle Scholar
  17. 17.
    Campi, G., Bianconi, A., Poccia, N., Bianconi, G., Barba, L., Arrighetti, G., Innocenti, D., Karpinski, J., Zhigadlo, N.D., Kazakov, S.M., Burghammer, M., Zimmermann, M.V., Sprung, M., Ricci, A.: Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor. Nature 525(7569), 359–362 (2015).  https://doi.org/10.1038/nature14987 ADSCrossRefGoogle Scholar
  18. 18.
    Fratini, M., Poccia, N., Ricci, A., Campi, G., Burghammer, M., Aeppli, G., Bianconi, A.: Scale-free structural organization of oxygen interstitials in La2CuO4+y. Nature 466(7308), 841–844 (2010).  https://doi.org/10.1038/nature09260 ADSCrossRefGoogle Scholar
  19. 19.
    Deffner, B., Jimaja, S., Kroeger, A., Schlüter, A.D.: Tensile behavior of a substituted poly(m-,p-phenylene) versus its parent counterpart and synthesis of related polyarylenes. Macromol. Chem. Phys. 218(5), 1600561 (2017).  https://doi.org/10.1002/macp.201600561 CrossRefGoogle Scholar
  20. 20.
    Heimel, G., Puschnig, P., Oehzelt, M., Hummer, K., Koppelhuber-Bitschnau, B., Porsch, F., Ambrosch-Draxl, C., Resel, R.: Chain-length-dependent intermolecular packing in polyphenylenes: a high pressure study. J. Phys.: Condens. Matter 15(20), 3375–3389 (2003).  https://doi.org/10.1088/0953-8984/15/20/302 ADSGoogle Scholar
  21. 21.
    Di Castro, D., Bianconi, G., Colapietro, M., Pifferi, A., Saini, N.L., Agrestini, S.: Evidence for the strain critical point in high Tc superconductors. The European Physical Journal B-Condensed Matter and Complex Systems 18, 617–624 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    Bianconi, A., Saini, N.L., Agrestini, S., Di Castro, D., Bianconi, G.: The strain quantum critical point for superstripes in the phase diagram of all cuprate perovskites. Int. J. Mod. Phys. B 14(29–31), 3342–3355 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    Jorgensen, J.D., Hinks, D.G., Short, S.: Lattice properties of MgB2 versus temperature and pressure. Phys. Rev. B 63(22), 224522 (2001).  https://doi.org/10.1103/physrevb.63.224522 ADSCrossRefGoogle Scholar
  24. 24.
    Campi, G., Cappelluti, E., Proffen, T., Qiu, X., Bozin, E.S., Billinge, J.L., Agrestini, S., Saini, N.L., Bianconi, A.: Study of temperature dependent atomic correlations in MgB2. The European Physical Journal B-Condensed Matter and Complex Systems 52 (1), 15–21 (2006).  https://doi.org/10.1140/epjb/e2006-00269-7 ADSCrossRefGoogle Scholar
  25. 25.
    Bianconi, A., Di Castro, D., Agrestini, S., Campi, G., Saini, N.L., Saccone, A., De Negri, S., Giovannini, M.: A superconductor made by a metal heterostructure at the atomic limit tuned at the ‘shape resonance’: MgB2. J. Phys.: Condens. Matter 13, 7383–7390 (2001).  https://doi.org/10.1088/0953-8984/13/33/318 ADSGoogle Scholar
  26. 26.
    Fratini, M., Caivano, R., Puri, A., et al.: The effect of internal pressure on the tetragonal to monoclinic structural phase transition in ReOFeAs: the case of NdOFeAs. Supercond. Sci. Technol. 21(9), 092002 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Bianconi, A., Jarlborg, T.: Superconductivity above the lowest earth temperature in pressurized sulfur hydride. EPL (Europhysics Letters) 112, 37001 (2015).  https://doi.org/10.1209/0295-5075/112/37001 ADSCrossRefGoogle Scholar
  28. 28.
    Jarlborg, T., Bianconi, A.: Breakdown of the Migdal approximation at lifshitz transitions with giant zero-point motion in the H3S superconductor. Sci. Rep. 6(1), 24816 (2016).  https://doi.org/10.1038/srep24816 ADSCrossRefGoogle Scholar
  29. 29.
    Rietveld, H.M., Maslen, E.N., Clews, C.J.B.: An x-ray and neutron diffraction refinement of the structure of p-terphenyl. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 26(6), 693–706 (1970).  https://doi.org/10.1107/s0567740870003023 CrossRefGoogle Scholar
  30. 30.
    Baudour, J.L., Cailleau, H., Yelon, W.B.: Structural phase transition in polyphenyls. IV. double-well potential in the disordered phase of p-terphenyl from neutron (200 K) and X-ray (room-temperature) diffraction data. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 33(6), 1773–1780 (1977).  https://doi.org/10.1107/s0567740877007043 CrossRefGoogle Scholar
  31. 31.
    Cailleau, H., Heidemann, A., Zeyen, C.M.E.: Observation of critical slowing down at the structural phase transition in p-terphenyl by high-resolution neutron spectroscopy. J. Phys. C Solid State Phys. 12(11), L411–L413 (1979).  https://doi.org/10.1088/0022-3719/12/11/002 ADSCrossRefGoogle Scholar
  32. 32.
    Lechner, R.E., Toudic, B., Cailleau, H.: Observation of the effects of critical phenomena in paraterphenyl on quasielastic incoherent neutron spectra. J. Phys. C Solid State Phys. 17(3), 405–420 (1984).  https://doi.org/10.1088/0022-3719/17/3/013 ADSCrossRefGoogle Scholar
  33. 33.
    Cailleau, H., Baudour, J.L., Meinnel, J., Dworkin, A., Moussa, F., Zeyen, C.M.E.: Double-well potentials and structural phase-transitions in polyphenyls. Faraday Discussions Chem. Soc. 69, 7–18 (1980)CrossRefGoogle Scholar
  34. 34.
    Baranyai, A., Welberry, T.R.: Molecular dynamics simulation study of solid polyphenyls: structures determined by the interplay between intra- and intermolecular forces. Mol. Phys. 75(4), 867–879 (1992)ADSCrossRefGoogle Scholar
  35. 35.
    Goossens, D.J., Beasley, A.G., Welberry, T.R., Gutmann, M.J., Piltz, R.O.: Neutron diffuse scattering in deuterated para-Terphenyl, C18 D 14. J. Phys. Condens. Matter 21(12), 124204 (2009).  https://doi.org/10.1088/0953-8984/21/12/124204 ADSCrossRefGoogle Scholar
  36. 36.
    Rice, A.P., Tham, F.S., Chronister, E.L.: A temperature dependent x-ray study of the Order–Disorder enantiotropic phase transition of p-terphenyl. J. Chem. Crystallogr. 43(1), 14–25 (2013).  https://doi.org/10.1007/s10870-012-0378-6 CrossRefGoogle Scholar
  37. 37.
    Caivano, R., Fratini, M., Poccia, N., et al.: Feshbach resonance and mesoscopic phase separation near a quantum critical point in multiband FeAs-based superconductors. Supercond. Sci. Technol. 22(1), 014004 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Kugel, K.I., Rakhmanov, A.L., Sboychakov, A.O., Poccia, N., Bianconi, A.: Model for phase separation controlled by doping and the internal chemical pressure in different cuprate superconductors. Phys. Rev. B 78(16), 165124 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Bianconi, A., Di Castro, D., Bianconi, G., Pifferi, A., Saini, N.L., Chou, F.C., Johnston, D.C., Colapietro, M.: Coexistence of stripes and superconductivity: Tc amplification in a superlattice of superconducting stripes. Physica C: Superconductivity 341–348, 1719–1722 (2000).  https://doi.org/10.1016/s0921-4534(00)00950-3 CrossRefGoogle Scholar
  40. 40.
    Saini, N.L., Oyanagi, H., Ito, T., Scagnoli, V., Filippi, M., Agrestini, S., Campi, G., Oka, K., Bianconi, A.: Temperature dependent local Cu-O displacements from underdoped to overdoped La-Sr-Cu-O superconductor. The European Physical Journal B-Condensed Matter and Complex Systems 36(1), 75–80 (2003).  https://doi.org/10.1140/epjb/e2003-00318-9 ADSCrossRefGoogle Scholar
  41. 41.
    Peacock, T.E., Wilkinson, P.T.: The electronic structure and spectra of the polyacenes. Proc. Phys. Soc. 83(4), 525–532 (1964).  https://doi.org/10.1088/0370-1328/83/4/303 ADSCrossRefGoogle Scholar
  42. 42.
    Whangbo, M.H., Hoffmann, R., Woodward, R.B.: Conjugated one and two dimensional polymers. Proc. R. Soc. A Math. Phys. Eng. Sci. 366 (1724), 23–46 (1979).  https://doi.org/10.1098/rspa.1979.0037 ADSCrossRefGoogle Scholar
  43. 43.
    Faramarzi, V., Niess, F., Moulin, E., Maaloum, M., Dayen, J.-F., Beaufrand, J.-B., Zanettini, S., Doudin, B., Giuseppone, N.: Light-triggered self-construction of supramolecular organic nanowires as metallic interconnects. Nat. Chem. 4, 485–490 (2012).  https://doi.org/10.1038/nchem.1332 CrossRefGoogle Scholar
  44. 44.
    Malvankar, N.S., Vargas, M., Nevin, K.P., Franks, A.E., Leang, C., Kim, B.-C., Inoue, K., Mester, T., Covalla, S.F., Johnson, J.P., Rotello, V.M., Tuominen, M.T., Lovley, D.R.: Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 6, 573–579 (2011).  https://doi.org/10.1038/nnano.2011.119 ADSCrossRefGoogle Scholar
  45. 45.
    Botta, C., Destri, S., Porzio, W., Tubino, R.: Optical and vibratio nal properties of conjugated polymeric heterostructures. J. Chem. Phys. 102, 1836–1845 (1995).  https://doi.org/10.1063/1.468711 ADSCrossRefGoogle Scholar
  46. 46.
    Moulton, B., Zaworotko, M.J.: From molecules to crystal engineering:? supramolecular isomerism and polymorphism in network solids. Chem. Rev. 101(6), 1629–1658 (2001).  https://doi.org/10.1021/cr9900432 CrossRefGoogle Scholar
  47. 47.
    Hammer, B.A.G., Müllen, K.: Dimensional evolution of polyphenylenes: Expanding in all directions. Chem. Rev. 116(4), 2103–2140 (2016).  https://doi.org/10.1021/acs.chemrev.5b00515 CrossRefGoogle Scholar
  48. 48.
    Akizuki, K., Ohma, A., Miura, S., Matsuura, T., Yoshizawa-Fujita, M., Takeoka, Y., Rikukawa, M.: Hydrophilic–hydrophobic diblock copolymers based on polyphenylenes for cathode ionomers of fuel cells. Sustainable Energy Fuels 1(6), 1299–1302 (2017).  https://doi.org/10.1039/c7se00167c CrossRefGoogle Scholar
  49. 49.
    Lausi, A., Polentarutti, M., Onesti, S., Plaisier, J.R., Busetto, E., Bais, G., Barba, L., Cassetta, A., Campi, G., Lamba, D., Pifferi, A., Mande, S.C., Sarma, D.D., Sharma, S.M., Paolucci, G.: Status of the crystallography beamlines at Elettra. Eur. Phys. J. Plus 130, 43 (2015).  https://doi.org/10.1140/epjp/i2015-15043-3. CrossRefGoogle Scholar
  50. 50.
    Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., Hausermann, D.: Two-dimensional detector software: from real detector to idealized image or two-theta scan. High Pressure Research 14(4–6), 235–248 (1996).  https://doi.org/10.1080/08957959608201408 ADSCrossRefGoogle Scholar
  51. 51.
    Valletta, A., Bianconi, A., Perali, A., Saini, N.L.: Electronic and superconducting properties of a superlattice of quantum stripes at the atomic limit. Zeitschrift fur Physik B Condensed Matter 104(4), 707–713 (1997).  https://doi.org/10.1007/s002570050513 ADSCrossRefGoogle Scholar
  52. 52.
    Guidini, A., Perali, A.: Band-edge BCS-BEC crossover in a two-band superconductor: physical properties and detection parameters. Supercond. Sci. Technol. 43, 14–25 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.CNR-Istituto di Cristallografia (IC) and Elettra-Sincrotrone TriesteTriesteItaly
  2. 2.CNR-Istituto di Cristallografia (IC)RomaItaly
  3. 3.CNR-Istituto di Struttura della Materia (ISM)RomaItaly
  4. 4.CNR-Istituto Struttura della Materia (ISM)TriesteItaly
  5. 5.Istituto Nazionale di Fisica Nucleare (INFN)-Laboratori Nazionali di FrascatiFrascatiItaly
  6. 6.Rome International Center for Materials Science Superstripes (RICMASS)RomeItaly
  7. 7.National Research Nuclear University MephiMoscowRussia

Personalised recommendations