On the Origin of a Small Hole Pocket in the Fermi Surface of Underdoped YBa2Cu3O y

Original Paper

Abstract

The comprehensive experimental studies of the quantum oscillations (QOs) in YBa2Cu3O y (YBCO) lead N. Doiron-Leyraud et al. (Nature Communications 6:6034, 2015) to detection of small hole pockets below the transition into the charge-ordered (CO) phase. Their interpretation of the observed energy spectrum imposes serious constraints for the possible origin of electron and hole pockets—both of them should be due to the Fermi surface (FS) reconstruction at charge ordering with biaxial order parameter. However, the results of recent X-ray experiments which reveal the uniaxial CO in the underdoped YBCO make such interpretation questionable. We show that uniaxial CO parameter in combination with preexisting electron pocket at the Γ-point of Brillouin zone suggests a plausible interpretation of QOs associated with small hole pockets in YBCO.

Keywords

High Tc superconductors Fermi surface Pseudogap state Charge ordering Quantum oscillations 

Notes

Acknowledgements

The work of L. P. G. was supported by the NHMFL through NSF Grant No. DMR-1157490, the State of Florida, and the U.S. Department of Energy and that of G. B. T. by the Russian Academy of Sciences through Grants RAS 1.2P and RAS IV.2.2.

References

  1. 1.
    Doiron-Leyraud, N., et al.: Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy. Nat. Commun. 6, 6034 (2015).  http://dx.doi.org/https://doi.org/10.1038/ncomms7034 CrossRefGoogle Scholar
  2. 2.
    Yoshida, T., et al.: Pseudogap, superconducting gap, and Fermi arc in high-Tc cuprates revealed by angle-resolved photoemission spectroscopy. J. Phys. Soc. Jpn. 81, 011006 (2012).  https://doi.org/10.1143/JPSJ.81.011006 ADSCrossRefGoogle Scholar
  3. 3.
    Yoshida, T., et al.: Systematic doping evolution of the underlying Fermi surface of La2−xSrxCuO4. Phys. Rev. B 74, 224510 (2006).  https://doi.org/10.1103/PhysRevB.74.224510 ADSCrossRefGoogle Scholar
  4. 4.
    Fournier, D., et al.: Loss of nodal quasiparticle integrity in underdoped YBa2Cu3O6 + x. Nat. Phys. 6, 905 (2010).  https://doi.org/10.1038/nphys1763 CrossRefGoogle Scholar
  5. 5.
    Barišić, N., et al.: Universal sheet resistance and revised phase diagram of the cuprate high-temperature superconductors. PNAS 110, 12235 (2013).  https://doi.org/10.1073/pnas.1301989110 ADSCrossRefGoogle Scholar
  6. 6.
    Gor’kov, L.P.: Kinetics of excitations on the Fermi arcs in underdoped cuprates at low temperatures. Phys. Rev. (Rapid Comm.) B 88, 041104 (2013).  https://doi.org/10.1103/PhysRevB.88.041104 ADSCrossRefGoogle Scholar
  7. 7.
    Doiron-Leyraud, N., et al.: Quantum oscillations and the Fermi surface in an underdoped high- T c superconductor. Nature 447, 565–568 (2007).  https://doi.org/10.1038/nature05872 ADSCrossRefGoogle Scholar
  8. 8.
    Taillefer, L.J.: Fermi surface reconstruction in high- T c superconductors. Phys.: Condens. Matter 21, 164212 (2009).  https://doi.org/10.1088/0953-8984/21/16/164212 ADSGoogle Scholar
  9. 9.
    Chang, J., et al.: Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nat. Phys. 8, 871–876 (2012).  https://doi.org/10.1038/nphys2456 CrossRefGoogle Scholar
  10. 10.
    Ghiringhelli, G., et al.: Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O6 + x. Science 337, 821–825 (2012).  https://doi.org/10.1126/science.1223532 ADSCrossRefGoogle Scholar
  11. 11.
    Blackburn, E., et al.: Inelastic x-ray study of phonon broadening and charge-density wave formation in ortho-II-ordered YBa2Cu3O6.54. Phys. Rev. B 88, 054506 (2013).  https://doi.org/10.1103/PhysRevB.88.054506 ADSCrossRefGoogle Scholar
  12. 12.
    Blackburn, E., et al.: X-ray diffraction observations of a charge-density-wave order in superconducting ortho-II YBa2Cu3O6.54 single crystals in zero magnetic field. Phys. Rev. Lett. 110, 137004 (2013).  https://doi.org/10.1103/PhysRevLett.110.137004 ADSCrossRefGoogle Scholar
  13. 13.
    Wu, T., et al.: Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy. Nature 477, 191–194 (2011).  https://doi.org/10.1038/nature10345 ADSCrossRefGoogle Scholar
  14. 14.
    Doiron-Leyraud, N., et al.: Hall, Seebeck, and Nernst coefficients of underdoped HgBa2CuO4+δ: Fermi-surface reconstruction in an archetypal cuprate superconductor. Phys. Rev. X 3, 021019 (2013).  https://doi.org/10.1103/PhysRevX.3.021019 Google Scholar
  15. 15.
    Gor’kov, L.P., Teitel’baum, G.B.: Two-component energy spectrum of cuprates in the pseudogap phase and its evolution with temperature and at charge ordering. Sci. Rep. 5, 8524 (2015).  https://doi.org/10.1038/srep08524 CrossRefGoogle Scholar
  16. 16.
    Millis, A.J., Norman, M.R.: Antiphase stripe order as the origin of electron pockets observed in 1/8-hole-doped cuprates. Phys. Rev. B 76, 220503(R) (2007).  https://doi.org/10.1103/PhysRevB.76.220503 ADSCrossRefGoogle Scholar
  17. 17.
    Li, J.-X., Wu, C.-Q., Lee, D.-H.: Checkerboard charge density wave and pseudogap of high- T c cuprate. Phys. Rev. B 74, 184515 (2006).  https://doi.org/10.1103/PhysRevB.74.184515 ADSCrossRefGoogle Scholar
  18. 18.
    Seo, K., Chen, H.-D., Hu, J.: D-wave checkerboard order in cuprates. Phys. Rev. B 76, 020511(R) (2007).  https://doi.org/10.1103/PhysRevB.76.020511 ADSCrossRefGoogle Scholar
  19. 19.
    Allais, A., Chowdhury, D., Sachdev, S.: Connecting high-field quantum oscillations to zero-field electron spectral functions in the underdoped cuprates. Nat. Commun. 5, 5771 (2014).  https://doi.org/10.1038/ncomms6771 ADSCrossRefGoogle Scholar
  20. 20.
    Comin, R., et al.: Symmetry of charge order in cuprates. Nat. Mater. 14, 796–800 (2015).  https://doi.org/10.1038/nmat4295 ADSCrossRefGoogle Scholar
  21. 21.
    Comin, R., et al.: Broken translational and rotational symmetry via charge stripe order in underdoped YBCO. Science 347, 1335–1339 (2015).  https://doi.org/10.1126/science.1258399 ADSCrossRefGoogle Scholar
  22. 22.
    Comment to Comin R. et al.: Science 347, 1335–1339 (2015): Fine B., Science 351, 235-a (2016).  https://doi.org/10.1126/science.aac4454
  23. 23.
    Authors response to Comment to Comin R. et al.: Science 347, 1335–1339 (2015): Fine B., Science 351, 235-a (2016): Science v.351, 235-b (2016).  https://doi.org/10.1126/science.aac4778
  24. 24.
    Kharkov, Y.A., Sushkov, O.P.: The amplitudes and the structure of the charge density wave in YBCO. Sci. Rep. 6, 34551 (2016).  https://doi.org/10.1038/srep34551 ADSCrossRefGoogle Scholar
  25. 25.
    Chang, J., et al.: Magnetic field controlled charge density wave coupling in underdoped YBa2Cu3O6 + x. Nat. Commun. 7, 11494 (2016).  https://doi.org/10.1038/ncomms11494 ADSCrossRefGoogle Scholar
  26. 26.
    Jang, H., et al.: Ideal charge-density-wave order in the high-field state of superconducting YBCO. PNAS 113, 14645–14650 (2016).  https://doi.org/10.1073/pnas.1612849113 ADSCrossRefGoogle Scholar
  27. 27.
    Riggs, S.C., et al.: Heat capacity through the magnetic-field-induced resistive transition in an underdoped high-temperature superconductor. Nat. Phys. 7, 332–335 (2011).  https://doi.org/10.1038/nphys1921 CrossRefGoogle Scholar
  28. 28.
    Kemper, J.B., et al.: Thermodynamic signature of a magnetic-field-driven phase transition within the superconducting state of an underdoped cuprate. Nat. Phys. 12, 47–51 (2016).  https://doi.org/10.1038/nphys3502 CrossRefGoogle Scholar
  29. 29.
    Gor’kov, L.P.: Quantum oscillations in the vortex state of underdoped YBa2Cu3O6.5 and other multiband superconductors. Phys. Rev. B 86, 060501 (2012).  https://doi.org/10.1103/PhysRevB.86.060501 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.NHMFLFlorida State UniversityTallahasseeUSA
  2. 2.L.D. Landau Institute for Theoretical Physics of the RASChernogolovkaRussia
  3. 3.E.K. Zavoiskii Institute for Technical Physics of the RASKazanRussia

Personalised recommendations