The First-Principle Study of the Electronic Structure, Ferromagnetic and Thermoelectric Properties of Spinel Alloy FeAl2O4 Using mBJ Functional Approach

Original Paper
  • 84 Downloads

Abstract

In this research work, the modified Becke and Johnson potential has been used to realize the actual electronic states and band gap properties of FeAl2O4. Ferromagnetism is illustrated in terms of John-Teller energy and exchange energies involved in the system due to electron spin. Moreover, the exchange constants also support the ferromagnetism in the studied compound. The reduction of the magnetic moment of Fe from its free space value and the shifting of the magnetic moment to nonmagnetic sites are the consequence of strong magnetization. In the end, the electrical conductivity and Seebeck coefficient incorporated to give a high value of the power factor and thermal efficiency for energy renewable devices.

Keywords

Density functional theory Magnetic spinel oxides Thermal conductivity Energy renewable devices 

Notes

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding research grant no. RG1435-004. M. Yaseen is also thankful to Higher Education Commission (HEC), Pakistan for funding this work (Grant No. 6410/Punjab/NRPU/R&D/HEC/2016 and Grant No. 21-261/SRGP/R&D/HEC/2014).

References

  1. 1.
    Jastrzėbska, I., Szczerba, J., Stoch, P., Błachowski, A., Ruebenbauer, K., Prorok, R., Sniezek, E.: Nukleonika 60(1), 47 (2015)Google Scholar
  2. 2.
    Propach, G.: Neues Jahrb. Mineral. Abh. 115, 120 (1971)Google Scholar
  3. 3.
    Hill, R.J.: Am. Mineral. 69, 937 (1984)Google Scholar
  4. 4.
    Russo, U., Carbonin, S., Giusta, A.D., Long, G.J., Grandjean, F.: Mossbauer Spectroscopy Applied to Magnetism and Materials Science, vol. 2, p 207. Plenum, New York (1996)CrossRefGoogle Scholar
  5. 5.
    Botta, P.M., Mercader, R.C., Aglietti, E.F., Porto Lopez, J.M.: Scr. Mater. 48, 1093 (2003)CrossRefGoogle Scholar
  6. 6.
    Tristan, N., Hemberger, J., Krimmel, A., Nidda, H.A.K., Tsurkan, V., Loidl, A.: Phys. Rev. B 72, 174404 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Smith, J., Wijn, H.P.: Ferrites. Wiley, New York (1959)Google Scholar
  8. 8.
    Do, D.T.M., Nanko, M.: IOP Conf. Ser.: Mater. Sci. Eng. 20, 012013 (2011)CrossRefGoogle Scholar
  9. 9.
    Dutta, D.P., Sharma, G.: Mater. Sci. Eng. B 176, 177 (2011)CrossRefGoogle Scholar
  10. 10.
    Fukushima, J., Hayashi, Y., Takizawa, H.: J. Asian Ceram. Soc. 1, 41 (2013)CrossRefGoogle Scholar
  11. 11.
    Imran, M., Akram, R., Riaz, S., Kayani, ZN, Naseem, S.: The World Congress on Advances in Civil, Environmental, and Materials Research (ACEM16), Jeju Island, Korea August 28–September 1Google Scholar
  12. 12.
    Mahmood, Q, Hassan, M.: J. Alloys Compd. 704, 659 (2017)CrossRefGoogle Scholar
  13. 13.
    Mahmood, Q., Javad, A., Murtaza, G., Allay-e-Abbas Mater, S.M.: Chem. Phys. 162, 831 (2015)Google Scholar
  14. 14.
    Mahmood, Q., Hassan, M., Faridi, M.A., Sabar, B., Murtaza, G., Mahmood, A.: Curr. Appl. Phys. 16, 549 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Mahmood, Q., Murtaza, G., Ahmad, R., Hussain, T., Will, I.G.: J. Curr. Appl. Phys. 16, 361 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Mahmood, Q., Hassan, M., Noor, N.A.: J. Phys. Conden. Mater. 28, 506001 (2016)CrossRefGoogle Scholar
  17. 17.
    Khalid, M., Riaz, S., Azam, M., Naseem, S.: The 2014 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM14), Bosan, Korea, 24 August (2014)Google Scholar
  18. 18.
    Walsh, A., Wei, S.H., Yan, Y., Al-Jassim, M.M., Turner, J.A., Woodhouse, M., Parkinson, B.A.: Phys. Rev. B 76, 165119 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Kohn, W., Sham, L.S.: Phys. Rev. A 140, 1133 (1965)ADSCrossRefGoogle Scholar
  20. 20.
    Tran, F., Blaha, P.: Phys. Rev. Lett. 102, 22640 (2009)Google Scholar
  21. 21.
    Blaha, P., Schwarz, K., Sorantin, P., Trickey, S.K.: Comput. Phys. Commun. 59, 339 (1990)CrossRefGoogle Scholar
  22. 22.
    Andersen, O.K.: Phys. Rev. B 12, 3060 (1975)ADSCrossRefGoogle Scholar
  23. 23.
    Madsen, G.K.H., Schwarz, K., Singh, D.J.: Comput. Phys. Commun. 175, 67 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Saini, H.S., Singh, M., Reshak, A.H., Kashyap, M.K.: J. Magn. Magn. Mater. 331, 1 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Varignon, J., Bristowe, N.C., Bousque, E., Ghosez, P.: Sci. Rep. 5, 15364 (2015).  https://doi.org/10.1038/srep15364 ADSCrossRefGoogle Scholar
  26. 26.
    Choi, H.C., Shim, J.H., Min, B.I.: Phys. Rev. B 74, 172103 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Miao, N., Xu, B., Bristowe, N.C., Bilc, D.I., Verstraete, M.J., Ghosez, P.: J. Phys. Chem. C 120, 9112 (2016)CrossRefGoogle Scholar
  28. 28.
    Bilal, M., Khan, B., Aliabad, H.A.R., Maqbool, M., Asadabadi, S.J., Ahmad, I.: Comp. Phys. Commun. 185, 1394 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Singh, S., Maurya, R.K., Pandey, S.K.: J. Phys. D: Appl. Phys. 49, 425601 (2016)CrossRefGoogle Scholar
  30. 30.
    Ramachandran, T., Rajeevan, N.E., Pradyumnan, P.P.: Mater. Sci. Appl. 4, 816 (2013)Google Scholar
  31. 31.
    Kawakami, H., Saito, M., Takemoto, H., Yamamura, H., Isoda, Y., Shinohara, Y.: Mater. Trans. 54, 1818 (2013)CrossRefGoogle Scholar
  32. 32.
    Prasad, K.G., Niranjan, M.K., Asthana, S.: J. Alloys Compd. 696, 1168 (2017)CrossRefGoogle Scholar
  33. 33.
    Hill, R.J., Craig, J.R., Gibbs, G.V.: Phys. Chem. Miner. 4, 317 (1979)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of AgricultureFaisalabadPakistan
  2. 2.Materials Growth and Simulation Laboratory, Department of PhysicsUniversity of the PunjabLahorePakistan
  3. 3.Physics and Astronomy Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Chemical Engineering Department, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations