Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 12, pp 3351–3354 | Cite as

Peculiarities of Magnetic Behavior of CuO Nanoparticles Produced by Plasma-Arc Synthesis in a Wide Temperature Range



Copper oxide nanoparticles, produced by direct plasmochemical synthesis in a low-pressure arc discharge plasma, show a wide variety of magnetic properties depending on the strength of the external magnetic field and the temperature. At low strength of the field and throughout the studied temperature range, the ferromagnetic state dominates. This state is caused by disordering of the spins on the surface of the nanoparticles. At high strength of the field and under temperatures of less than 200 K, nanoparticles exhibit a paramagnetic state due to the spin-glass behavior of copper atoms. At high strength of the field (more than 3 kOe) and under temperatures of above 300 K, the diamagnetic state of nanoparticles is observed, due to local eddy currents caused by oxygen vacancies. The temperature of antiferromagnetic ordering under study is significantly lowered (down to ∼ 100 K).


CuO nanoparticles Vacuum arc Ferromagnetism Diamagnetism 



This study was supported by the Russian Science Foundation (Project No 16-19-10054).


  1. 1.
    Ushakov, A.V., Karpov, I.V., Lepeshev, A.A., Petrov, M.I.: J. Appl. Phys. 118, 023907 (2015). ADSCrossRefGoogle Scholar
  2. 2.
    Ushakov, A.V., Karpov, I.V., Lepeshev, A.A., Petorv, M.I., Fedorov, L.Yu.: JETP Lett. 99, 99 (2014). ADSCrossRefGoogle Scholar
  3. 3.
    Lepeshev, A.A., Ushakov, A.V., Karpov, I.V., Balaev, D.A., Krasikov, A.A., Dubrovskiy, A.A., Velikanov, D.A., Petrov, M.I.: J. Supercond. Nov. Magn. 30, 931 (2017). CrossRefGoogle Scholar
  4. 4.
    Karpov, I.V., Ushakov, A.V., Lepeshev, AA., Fedorov, Yu. L.: Tech. Phys. 62, 168 (2017). CrossRefGoogle Scholar
  5. 5.
    Ushakov, A.V., Karpov, I.V., Lepeshev, A.A., Petrov, M.I.: Vacuum 133, 25 (2016). ADSCrossRefGoogle Scholar
  6. 6.
    Ushakov, A.V., Karpov, I.V., Lepeshev, A.A., Petrov, M.I., Fedorov, Yu. L.: Phys. Solid State 57, 919 (2015). ADSCrossRefGoogle Scholar
  7. 7.
    Karpov, I.V., Ushakov, A.V., Fedorov, L. Yu., Lepeshev, A.A.: Tech. Phys. 84, 559 (2014). CrossRefGoogle Scholar
  8. 8.
    Dobretsov, K., Stolyar, S., Lopatin, A.: Acta Otorhinolaryngol. Ital. 35, 97 (2015)Google Scholar
  9. 9.
    Punnoose, A., Magnone, H., Seehra, M.S., Bonevich, J.: Phys. Rev. B 64, 174420 (2001). ADSCrossRefGoogle Scholar
  10. 10.
    Zheng, X.G., Xu, C.N., Nishikubo, K., Nishiyama, K., Higemoto, W., Moon, W.J., Tanaka, E., Otabe, E.S.: Phys. Rev. B 72, 014464 (2005). ADSCrossRefGoogle Scholar
  11. 11.
    Kumzerov, Yu. A., Kartenko, N.F., Parfen’eva, L.S., Smirnov, I.A., Sysoeva, A.A., Misiorek, H., Jezowski, A.: Phys. Solid State 54, 1066 (2012). ADSCrossRefGoogle Scholar
  12. 12.
    Thota, S., Shim, J.H., Seehra, M.S.: J. Appl. Phys. 114, 214307 (2013). ADSCrossRefGoogle Scholar
  13. 13.
    Arbuzova, T.I., Naumov, S.V., Samokhvalov, A.A., Gizhevskii, B.A., Arbuzov, V.L., Shal’nov, K.V.: Phys. Solid State 43, 878 (2001). ADSCrossRefGoogle Scholar
  14. 14.
    Arbuzova, T.I., Naumov, S.V., Arbuzov, V.L., Shal’nov, K.V., Ermakov, A.E., Mysik, A.A.: Phys. Solid State 45, 304 (2003). ADSCrossRefGoogle Scholar
  15. 15.
    Asharf Shah, M., Al-Ghamdi, M.S.: Mater. Sci. Appl. 2, 977 (2011). Google Scholar
  16. 16.
    L. Néel: CR Acad. Sci. Paris 252, 4075 (1961)Google Scholar
  17. 17.
    Kondo, O., Ono, M., Sugiura, E., Sugiyama, K., Date, M.: J. Phys. Soc. Jpn. 57, 3293 (1988). ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Krasnoyarsk Scientific CenterRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations